DOCUMENT RESUME

ED 095 017

SE 018 096

AUTHOR

Lunetta. Vincent N.

TITLE

Newton's Law: A Computer-Based Simulation for Introductory Physics. Technical Report No. 1.

INSTITUTION

Iowa Univ., Iowa City. Science Education Center.

REPORT NO

TR-1 Jul 74

PUB DATE

128p.; Some pages may reproduce poorly due to quality

of original document

EDRS PRICE DESCRIPTORS

MF-\$0.75 HC-\$6.60 PLUS POSTAGE

*Computer Assisted Instruction; Curriculum;

*Educational Research; Individualized Instruction; Instruction; Learning Activities; *Physics; Science Education: *Secondary School Science; *Simulation

IDENTIFIERS

Newton (Isaac)

ABSTRACT

This report describes four individualized programs which simulate physical experiments in force and motion, graph and data collected by individual students, and provide feedback to each student relative to his generalizations. An overview of the unit is provided, descriptions of the unit and accessory materials are presented, sample runs of the four programs are included, and instructional objectives are listed. Instructions given the students concerning procedures for running the programs, instructions for the teachers in regard to use of the programs, and evaluation instruments are included. One section of the report describes a study which evaluated the classroom use of these computer-based simulation programs. Finally, the program and file listings for each of the four programs, and non-computer simulation problem sheets are provided. (DT)

Technical Report Series

ERIC .

BEST COPY AVAILABLE

SCIENCE EDUCATION CENTER

The University of Iowa

July 1974

technical report 1

Newton's Law: A Computer-Based Simulation for Introductory Physics

by

Vincent N. Lunetta

Copyright Vincent N. Lunetta 1974

Assistant Professor
Science Education Center
University of Iowa
Iowa City, Iowa 52242

Table of Contents

I	Unit Overview	1
II	Descriptions of the Unit & Materials	1 ₄
	Programs Simulated Data & Problem Sheets	11
	Unit Development	11
III	Sample Program Runs	14 15
· · · .	FORCES	19 23
	FORCED	27
IV	Instructional Objectives	31
V	Messages to Students & Teachers	35
VI	Evaluation Instruments Description Pretest Posttest	39 40 42 50
	Student Attitude Survey Teacher Report	59 62
AII	Evaluation of Classroom Use	63
VIII	FORCEA and file A	78 79
	FORCEB and file B	97
IX	Non-Computer Simulation & Problem Sheets	
TV	MOU-computer Simulation & Problem Sheets	- J. L. (
χ	Acquisition and Use of Materials	123

UNIT OVERVIEW

technical report 1

PURPOSE

These four individualized programs simulate physical experiments in force and motion, graph the unique data collected by individual students, and provide feedback to each student relative to his generalizations. Film loops are available to improve the realism of each simulation.

ACCESS INSTRUCTIONS

Get-FORCEA

(Instructions for accessing successive programs are included within the first program of the series)

DESCRIPTION

These programs introduce Newton's Second Law through simulated laboratory experiences, and the Newton and Kilogram are defined. In using the programs, students improve their ability to make generalizations from graphed data and they will improve their understanding of motion and the property of inertia (Newton's First Law). The simulated experiments parallel a series of fundamental, inductive experiments developed by the Physical Science committee! The experiments are basic, yet to set up and adjust the real apparatus is a very time consuming process. This laboratory simulation is not designed to replace all first-hand experience with materials; however, the learning process can become more effective and efficient if appropriate laboratory work is supplemented with individualized, simulated experiments.

In each of the four programs the student must specify the variables for the particular experiment, e.g., the amount of force to be applied and the mass of the cart, in response to specific questions from the computer. The computer acts as "lab partner" and graphs the data: it then asks numerous questions about the regularities which are present. For example, the student has to determine acceleration from a graph of velocity vs. time in a couple of places.

If the student responds incorrectly, he is given assistance, and if he fails to grasp the concept after help has been provided more than once by the computer, he is instructed to see his teacher before preceding; the program is then automatically terminated. Each, completed simulation ends by instructing the student to list the sources of experimental error as he envisions them and to state the conclusions which can be drawn from the experiment. He is encouraged to pursue the investigation further at home or in the lab.

SUGGESTIONS FOR TEACHERS

This simulated experiment series is most appropriately utilized after linear motion and the property of inertia have been discussed but prior to introducing Newton's Second Law. Since students will spend approximately 30 minutes on each of the four programs, scheduling is critical when large numbers of students are involved. If multiple terminals are not available, other materials such as vectors and circular motion may be discussed in class while students progress through the simulated experiments on their own time.

To insure that students complete the series of programs, teachers should ask them that they turn in completed programs or that they include them in their laboratory notebooks. When a student reports to his teacher because his program was terminated early and he needs additional help, he should bring the computer output with him for review with his teacher. The concept causing the difficulty will be apparent in the closing lines of the program output.

Physical Science Study Committee, PHYSICS LABORATORY GUIDE, 2nd Edition Heath 1965, 35-37

DESCRIPTIONS OF THE UNIT AND MATERIALS

technical report 1

Description of the Force and Motion Unit

The series of simulations produced in this study parallel the fundamental, inductive experiments developed by the Physical Science Study Committee (PSSC) through which students generalize Newton's Second Law. Ceneral objectives of the Force and Motion Unit for experimental and control groups are:

- A. To provide the student with a detailed understanding of Newton's Second Law;
- B. To help the student develop graphical skills and an ability to interpret graphed data;
 - C. To help the student develop inquiry skills.

A more detailed list of specific objectives for the unit stated in behavioral terms is included in a subsequent section of this report.

Film Loops. The simulated investigations begin as the student views a film loop showing a jet plane during take-off. The film loop places the student in the role of experimenter, and through over-printing he is asked questions which cause him to consider the variables affecting the acceleration of the plane. The film fades from the airplane to a laboratory environment wherein the student is shown how to measure the effects of variables upon the acceleration of a dynamics cart. After viewing a person working with the apparatus, students acquire simulated data that they must analyze. After their analysis of the data, they move through successive viewings of film loops and interactions with the simulated experiments.

¹ Physical Science Study Committee. Physics Laboratory Guide. Englewood, N.J.: D.C. Heath and Co., 1965, p. 35-37.

Programs. The simulations are broken into four major components, each developing one major idea as depicted in Figure 1. Program #1 (FORCEA) develops the concept that the velocity of an object changes at a constant rate When a constant force is applied, i.e., a constant force produces a constant acceleration. It also introduces the notion that the acceleration of a body is in some way inversely related to its mass. Program #2 (FORCEB) develops the idea that the acceleration of an object is directly related to the applied force. Program #3 (FORCEC) develops the idea that acceleration is inversely proportional to mass when the applied force is held constant. Program #4 (FORCED) synthesizes these concepts and develops Newton's Second Law from them; it also introduces the newton as the unit of force in the MKS system. Each program concludes with problems reviewing the concepts developed in the unit up to that point. Also, the student is asked to list the sources of experimental error as he envisions them and to state the conclusions which can be drawn from each investigation. He is encouraged to pursue each investigation further at home or in the laboratory.

Students interact with the computer through remote terminals using natural language messages to get unique data they are to analyze. Each computer program begins with a short question to assess whether or not the student has attained the competencies necessary to enter that phase of the unit. If he does not meet the entrance competency required in programs #2, #3, and #4, he is given a second chance to do so without any assistance. If he responds incorrectly the second time, he is told to review the previous program. If the computer determines that he does not meet the entrance competency at the beginning of program #1, he is given

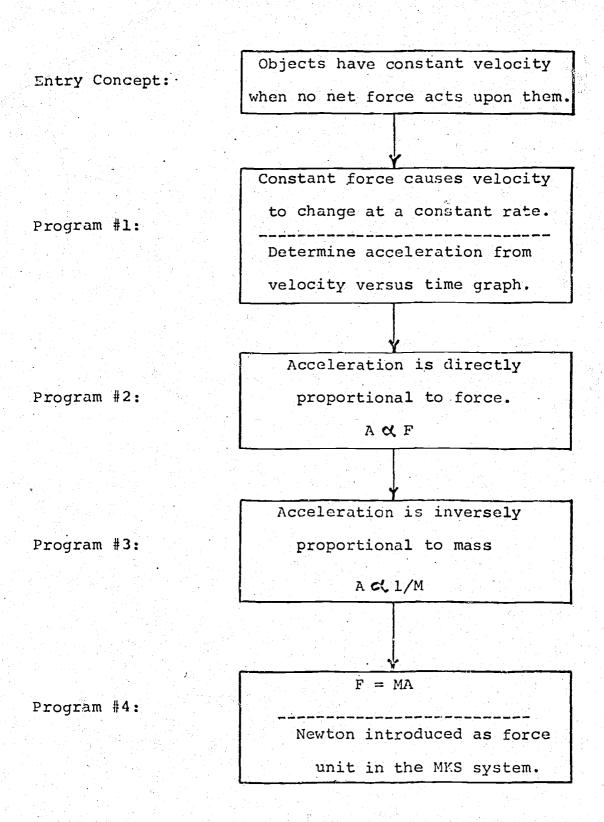


Figure 1. Sequence of Major Concepts in the Instructional Unit

assistance by means of typed messages. If he fails to respond correctly in three attempts, he is told to review certain materials before returning to the computer terminal.

After the student enters a particular program, the computer plays the role of the student's lab partner in a dialog mode. It asks questions which allow the student to specify the independent variables in the investigation such as the amount of force to be applied and the mass of the cart, and it generates unique data for the dependent variable "very similar to that obtained by experimenters using the real apparatus shown in the film loop." In data collection, the computer types out statements such as: "You make the simulated run with the cart applying a force of XXX (sprcified previously by the student), then I'll analyze the ticker tape, make a data table, and plot a graph of velocity versus time..."

The computer organizes and plots the data many times faster than the student can, thus allowing him to focus on the regularities apparent in the data instead of the algebraic manipulations necessary to graph the data. An even more important aspect of these dialogs are the questions the computer asks the student concerning generalizations which should be apparent in the data. At some points the student is asked to determine acceleration from a velocity versus time graph (slope). At another point he must note that a curve does not pass through the origin, and he is asked to explain why it does not do so.

Typed below is a short extract from program #2 which conveys the nature of the interactive dialog concerning graphed data:

NOTE THAT THE GRAPH DOES NOT PASS THROUGH THE ORIGIN. APPARENTLY THE CART DOES NOT ACCELERATE WHEN WE APPLY A SMALL POSITIVE FORCE. WHAT COULD CAUSE THIS?

THERE IS FRICTION BETWEEN THE CART AND THE FLOOR WHICH OPPOSES THE FORCE WE APPLY. STUDY THE GRAPH AND DETERMINE FROM IT THE FORCE OF FRICTION (IN LOOPS). ?.5

FINE! THE FORCE OF FRICTION IS REPRESENTED BY THE INTERCEPT OF THE GRAPH WITH THE FORCE AXIS. HAD WE USED A CART WITH GREATER FRICTION THAN IN OUR EXPERIMENT WOULD THIS INTERCEPT BE TO THE RIGHT OR LEFT OF ITS PRESENT LOCATION? ?RIGHT

CORRECT! NEXT, I'M GOING TO-TAKE THE DATA WE COLLECTED AND PLOT THE RESULTANT FORCE ACTING ON THE CART, INSTEAD OF THE FORCE YOU APPLIED IN EACH RUN. (THE RESULTANT OR NET FORCE IS THE FORCE YOU APPLIED MINUS THE FORCE OF FRICTION.)
TYPE IN THE POINT WHERE YOU THINK THE NEW PLOT WILL INTERSECT THE FORCE AXIS.

RIGHT! HERE'S THE NEW GRAPH:

For brevity only correct responses have been shown. Had a response been incorrect, a discussion of the particular item would have appeared, followed by further questions on the same point. If the student exceeds a certain error rate, he is told to consult with his teacher before continuing the program. A sample error branching sequence is shown diagrammatically in Figure 2. The dashed line in the Figure indicates that after providing help the teacher has the option of sending the student on to the next instructional sequence or returning him to the same instructional sequence in which he encountered difficulty. This particular program

² Question marks at the left edge of a line are followed by the student's response.

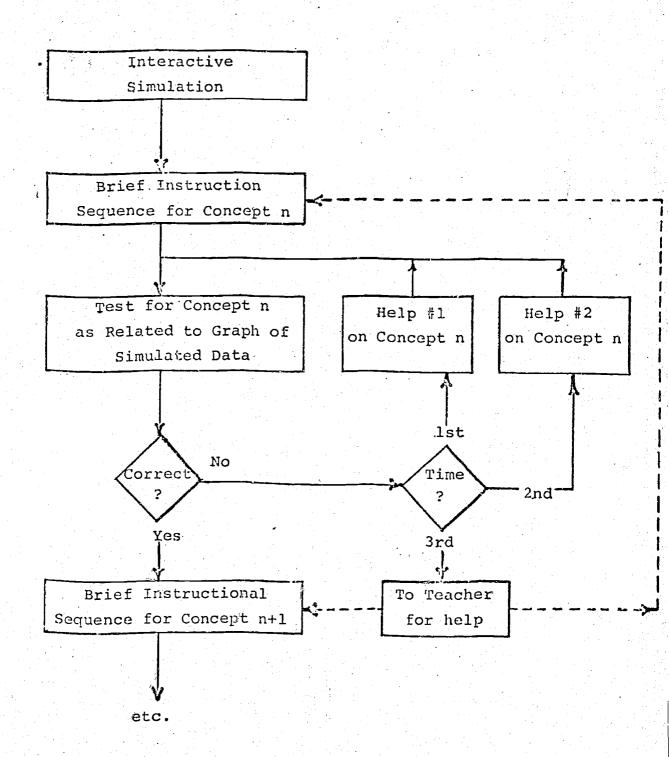


Figure 2. Sample Branching Sequence

segment extracted from program #2 is followed by the plotting of a new graph, a brief discussion of that graph, and a dialog which asks the student to write an equation to fit the graph. The sample computer dialog runs included in this report should be reviewed individually for a more thorough overview of the interactive simulations.

Simulated Data and Problem Sheets. Data and problem sheets providing information very similar to that in the computer programs are included in the final section of this report. They are designed for use by students who do not have access to an appropriate computer facility. Each data and problem sheet reviews briefly the objectives of the particular investigation and then provides data "the experimenters gathered... from a careful analysis of the ticker tape pulled by the cart." Each student is asked to graph the data and discuss specific questions relating to the graphs on an "investigation work sheet."

Unit Development

The particular concepts taught in this instructional unit were selected for several reasons. They are fundamental in mechanics, they are readily amenable to graphical display as linear relationships, and the author has observed that few physics teachers have students do laboratory work in the area. Initial program writing was done in English language. During the lesson writing, main programs were completed before error loops were written. (Error loops provide help following the entry of an incorrect student response). The completed programs were then coded in BASIC. Certain other computer languages

would have expedited program coding, but the BASIC language was the only language available to the author's students at that time, and it did not excessively constrain his initial objectives. In order to remain within a 5000 word core, each program in the series references a file in which messages are stored that do not contain variable quantities.

The lessons were altered in minor ways during encoding. Later they were revised based upon feedback from a small number of students who used the materials prior to widespread use of the programs.

The simulated data and problem sheets were prepared from the computer lessons after the computer lessons had been revised. Data appearing on these sheets were similar to that which is obtained by computer students, and the outline of the sheets parallels that of the computer programs. Questions and problems included in the computer programs are included on the simulated data and problem sheets. Correct answers are included for some of the problems, but most often the student is not provided with correct responses on the sheets. Feedback regarding the accuracy of his responses, if he is to get it, will come from other students, his teacher, or the graphed data.

Scripts for the film loops were written and initial filming was conducted concurrently with the initial program writing. Filming was done in Super 8mm on Kodachrome II film. After commercial processing, film clips were spliced into final form, and they were then commercially reproduced and placed in cartridges. (Titling was accomplished by filming through plates of glass on which block letters had been placed.)

Classroom Implementation

Teachers who use the Force and Motion simulations may bring their students through preliminary materials in a variety of conventional way: (See Behavioral Objectives 1-4.) The students then progress individually at their own rates through the programs. Students normally schedule their programs outside of class time. Completed programs are to be submitted on certain dates which are specified in advance.

SAMPLE PROGRAM RUNS

technical report 1

GET-FORCEN RUN FORCEN

MELCOME TO CUP SIMULATED PHYSICS LAB. THROUGH THIS SERIES OF PROGRAMS ONE FILM LUMBS WE WILL INVESTIGATE HOW FORCE AFFECTS THE MOTIOM OF AN OBJECT. HAVE YOU WATCHED THE FILM LOOP FORCE & MOTION I?

USE DRLY NUMBERS AND CAPE FOR ANSWERS

?YES

ONE INSTRUCTION BEFORE WE BEGIN: WHEN YOU'RE ASKED TO TYPE IN MUMERICAL DATA: DO NOT TYPE THE UNITS OF THE ANSWER. FOR EXAMPLE: ACK ANSWER OF 1001/SEC SHOULD BE TYPED 1101.

EXPERIENCE TELLS US THAT WE MUST APPLY A FORCE TO CAUSE AN OBJECT TO HOVE. IN THIS SERIES OF SIMULATED EXPERIMENTS WE SHALL INVESTIGATE PHYSICAL VARIABLES WHICH AFFECT THE MOTION OF AN OBJECT, THE DATA WHICH WE WILL SENSEATE WILL BE VERY SIMILAR TO THAT ODTAINED BY EXPERIMENTERS USING THE REAL APPARATUS SHOWN IN THE FILM LOOP. I WILL BE YOUR LAB PARTNER.

REFIRE WE CONTINUE: YOU SHOULD BE FAMILION WITH THE PROFESTY OF THERTIC UNICH WAS DESCRISED BY GALILED AND HEMTON.

IF A POCK 1: TRAVELLING THROUGH SPACE AT 100 M/SEC AND THERE ARE NO FORCES ACTING ON 1T, WHAT WILL BE ITS SPEED (IN M/SEC) 5 SEC. LATER? \$100

COMPRECT! DOW TO THE PROPERTY OF INERTIA COMMETINES CALLED HEMTORYS 150 LAND AN COMETY VELOCITY WILL DE CONSTANT UNTIL AN UNGALENCE SOUCE IS ARRELED. YET, IN MOSAL WAY WILL AN UNGALED FORCE CAUSE THE VELOCITY TO CHARGE?

IN THIS FIRST EMPENDENT WE SHALL INVESTIGATE HOW AN OBJECTAR VEGGITY CONTROLS WHER WE ARREY A CONSTRUCT FUNCE. WE SHALL ARREY A CONSTRUCT FORCE TO THE CART BY LESPING ONE LUCK OF STUDICES A CONSTRUCT LEBOTH. (WE CAN STRETCH DUT LOOP TO RAY LENGTH BETWEER 500M AND 1000M.)

TYPE TELEVITOR COMMUNITUR STRETCH IN CHAMICH YOU INTEND TO APPLY DURING THE NUMBER TO SUPPREMENT THIS EXPLISIONAL. 250

YOU MAKE THE CIMPLAIRD FUN WITH THE COST ARELYING A FORCE OF 50 $^{\circ}$ CM $^{\circ}$ THEM INLE FUGEVER THE TICKER TORKS IN $^{\circ}$ A LATA TABLE FAMILY PLOT A GOLDH OF VENEZINY VERSUE THES.

HOW HAR? IPICES SHOUL WE PLACE ON THE COST FOR A LOAD IN THIS RUN? ${\it P1}$

I NO OUT THE CHAIN THE --- OND THEFT I BUILD FURNING THE CAST DOWN THE HOUR FLORISHED THE CAST DOWN THE

HERE IS A DATA TABLE INVENIENE FROM THE TICKER TARE PULLED BY THE CART IN THIS RUN:

```
TIME (SEC)
            VELOCITY (CM/CEC) [LOAD = 1
                                                   BRICKS FORCE = 50
                                                                             CM ]
    . 1
                      ع
    2.
                      4
    .3
                      6
    .4
                      8
    .5
                      1 Û
    .6
                      12
    .7
                      14.
    .8
                      16
    .9
                      18.
    1
                      20
```

HERE IS A GRAPH OF THE DATA:

	12	+												X									
		+																					
٧	1.0	+										X											
Ε	•	+																					
L	8	+								×													
0	(CM/SEC)	+																					
C	6	+						X															
I		+																					
T	4	+				×																	
7		+				•																	
•	2	+		Х																			
		+																					
	0		+	+	4.	4	•	•		+	٠.	_	_	_	4.		+	4		_	+	+	+
	•		•	Ċ	•	-	٠	·	•	·	•	Ľ	•	•	٠	<u>.</u>	•		٠	.=.	٠,	. •	
		0		. 1		.2		.3		.4		.5		.6		.7		.8		.9]	i .	Ü
										TI	ME		E	()									
[L	ΠAD = 1	1	GR.	IC	(S		F	DRI	CE	173	5	Ú		C.I	13								

STUDY THE DATA AND GRAPH. CAN YOU OBSERVE ANY REGULARITIES? ?Y!!

PLEASE TYPE YES OR NO

STUDY THE DATA AND GRAPH. CAN YOU OBSERVE ANY REGULARITIES? PYES

WHAT KIND OF RELATIONSHIP EXISTS BETWEEN VELOCITY AND TIME UNDER THUSE COMBITIONS (DIRECT OF INVERSE)?
ODIFICT

PIGHT: IN FACT, THERE APPEARS TO BE A LINEAR RELATIONSHIP BETWEEN MELDCITY AND TIME IF ME DVSALED: THE SMALL IRREGULLARITIES PROCESULV COMES BY EM & INJUSTIC SECOND -- SUCH AS VARIATIONS IN THE FORCE APPLICATION. THE CHORSE IN VELOCITY MAS PROPOSITIONS OF ACTUAL A COMES OF FRAME.

PROM YOUR COMES OF ACTUAL ASSOCIATION FATO.

PROM YOUR COMES OF ACTUAL AND BULL FOCALL THAT ACCOUNTY TION OF AN ORDER OF A THE COMES OF THE COMES OF THE CHAPMEN. THE COMES OF THE CHAPMEN. OF THE MELDELTY V. TIME CHAPM. OUR TOE IN VALUE OF THE COMES OF THE COMES OF THE COMES.

on a final trade on the first of a first term trade trade of the after a first of a Galve told.

Commander the first trade to the communication of the commu

THE CONTINUT PROOF MS APPLIED IN THIS BUN DID PRODUCE A CONSTANT ACCELERATION.

ANALYTE THE GRAPH AND DETERRINE THE ACCELERATION IN CMYSECUSEC. 720

OK. DUP CONSTANT FORCE OF 50 CM CAUSED OUR CART TO HAVE A CONSTANT ACCELERATION OF 20 CMYSECYSEC.

BUT IS THE ACCELEPATION ALWAYS CONSTART UNDER THE INFLUENCE OF A CONSTART PROCESS

HOW MOULD THE DOTO DIFFER IF WE HAD USED A DIFFERENT LOOD?

TO FIND OUT, LETTY CHANGE THE NUMBER OF BRICKS ON THE CART AND MAKE ANDHER BUT HER PRESENT FROM CM.

HOW MANY ERICKS SHOUL WE PLACE ON THE CART FOR A LOAD IN THIS PUR? ?2

IAVE GOT THE BUZZER ON: --- BND THERE YOU GO PUSHING THE CART DOWN THE

HERE IS A DATA TODAY I'VE MADE FROM THE TICKER TAPE PULLED BY THE CART IN THIS PUH:

TIME (SEC)	VELOCITY (CM/SEC)	CLDAD = 2	BRICKS	FORCE	= 50	CMD
• i	1.33			1 .		
.2	2.66					
.3	3.99					
.4	5.32 🔍					
.5	6.65					
.6	7.98					
.7	9.31					
.8	10.64					
,.9	11.97					
1	13.3					

HERE IS A GRAPH OF THE DATA:

```
×
           12
                                                              Х
W
           1.0
Ε
                                                         Х
           8
                                                   ×
    (CMYSEC)
×
Γ.
           6
                                        \mathcal{N}^{*}
I
T
                                  Х
                             Χ
           ٤
           13
                                                             .8
                                             . 5
                                                  .6
                                       TIME (DEC)
                               FORCE = 50
ILUMB = 2
                   JPJCH T
                                                  CMI
```

STOPE THE TEXT POR GERRY. COMMUNICATIVE (WEEK WINTER)

THE CONTENT FORCE WE APPLIED IN THIT RUN DID PRODUCE A CONSTANT ACCELERATION.

AHALYZE THE GRAPH AND DETERMINE THE ACCELERATION IN CM/SEC/SEC.

?13.3

OK. DUR CONSTRUT FORCE OF 50 OM CAUSED DUR CART TO HAVE A CONSTANT ACCELERATION OF 13.3 CMKSECKSEC.

AS YOU CAN SEE OUR DATA ALSO INDICATE THAT THE MASS OF THE CART DID AFFECT THE ACCELEGATION GREATER OF SMALLER WHEN THE SMALLER MASS WAS ACCELERATED? PEREATER

CORRECT: THE SMALLER MASS UNDERMENT A LARGER ACCELERATION. APPARENTLY THERE IS SOME KIND OF INVERSE PELATIONSHIP BETWEEN THE MASS OF AN ODJECT AND ITS OCCULERATION WHEN A CONSTANT FORCE IS CEPLIED. WE WILL FURTHER INVESTIGATE THIS RELATIONSHIP IN THE THIRD EXECRIMENT IN THIS SCRIES. TO SUMMY MICE: WE CON SEE FROM THE GROWNS OF OUR DATA THAT WHEN A CONSTANT FORCE WAS APPLIED TO A CAPT WITH A PAPTICULAR MASS THE ACCELERATION WAS CONSTANT.

NOW, LETTS TRY DUE LAST PROMISM.

IF AN AIRMLANSES SHAIMS PROLUCE A NET FORCE WHICH IS CONSTANT AND WHICH ACCELEMENTS THE PLANE FROM 0 TO 100 MASSO IN 20 SEC, WHAT WILL BE THE PLANE'S VALOCITY IN MASSO AT THE END OF 40 SEC?

7200

RIGHT: ASBIN, A CONSTANT FORCE CAUSES A MASS TO HAVE A CONSTANT ACCELERATION.
BUT HOW WOULD THE ACCELERATION HAVE DIFFERED HAD WE APPLIED A DIFFERENT FORCE?—THIS OUTSTION WILL FORM THE LASIS FOR THE NEXT EXPERIMENT IN THIS SERIES.

SINCE YOU HAVE PICK STUDYING FORCE AND MOTION USING A SIMULATED EXPORTENT, YOU HAVE NOT HAD TO CORE WITH THE MARY SOURCES OF EXPENDIOUSLE EPODE PRESCRIPTIN THE ACTUAL APPARATUR. IF YOU HAVE TO BO THE PEOL EXPORTMENT YOU WOULD HAVE TO REDUCE SUCH AS MAR TERRIFORD THE GEOFF ALIZATIONS WE'VE SEEN COULD BE DISSIVED. HER WE'VE NO WILL BE ABLE TO PURSUE THE INVESTIGATION FURTHER AT HOME OF IN YOUR LAB. AFTER YOU'VE, SICHED DAF THE TERRIFOLD LABEL OUT SEVERAL EMPARITMENTS OF FROME. ON THIS FOLICH THEM AND STATE THE MAJOR CONCLUSIONS YOU CAN DEST FROM THEM AND STATE THE MAJOR CONCLUSIONS YOU CAN DEST FROM THE FRANCHING. AS SOON AS YOU HAVE THE DEST TURNS OF FORCE ON MOTION IN ABOUTS IN SON THE DEST FROM CORE OF MOTION IN ABOUTS IN SON THE DEST FILM LOOP PROBLE O

TO SIGN HEET THE THEORY OF THE ESTUDIES AND PROSS THE ESTUDIES FOR THE PETUDIES.

RUH FORCEB

MECCOME AGAIN TO OUR SIMULATED PHYSICS LAR. IN THIS SECOND EXPERIMENT OF THE SERIES WE WILL INVESTIGATE HOW EMPCES AFFECT THE ACCELERATION OF AN OBJECT. HAVE YOU COMPLETED FORCEA & MATCHED THE FILM COOP *FORCE & MOTION 11*?

IN DUR LAST EXPERIMENT WE OBSERVED THAT A CONSTANT FORCE GAVE DUR CART WHAT KIND OF ACCELERATION? ?CONSTANT

RIGHT! HOW TO STUDY HOW ACCELERATION VARIES WHEN THE AFPLIED FORCE IS CHORGED WE'LL HOLD ALL DINER VARIABLES (SUCH AS MASS) CONSTRUCT. HOW MARY DRICKS SHALL WE PLACE ON THE CART THROUGHOUT THIS EMPERIMENTS 34

AS YOU OBSERVED IN THE FILM, WE CAN VARY THE FORCE WE APPLY BY USING DIFFERENT NUMBERS OF RUSBER LOOPS STRETCHED A CONSTANT LENGTH: I SUGGEST 60 CM FOR ALL LOOPS IN THIS EXPERIMENT YOU SPECIFY THE FORCE YOU'LL APPLY IN EACH TRIAL AND MAKE THE SIMULATED PUR. THEN I'LL DETERMINE ACCELERATION FROM THE TICKER TAPE AND PLOT A GRAPH OF ACCELERATION V. FORCE WHEN WE HAVE ENDUGH DATA.

HOW MANY LOOPS ARE YOU APPLYING IN THIS RUN?

WE DON'T HAVE ANY PARTIAL LOOPS IN OUR LAB. TYPE IN A WHOLE HUMBER.

THE ACCELERATION IN THIS RUN WAS: 9.6

CM/SEC/SEC.

HOW MARY LOOPS ARE YOU APPLYING IN THIS RUN?

THE ACCELEPATION IN THIS BUN WAS: 28.8

CMUSECUSEC.

HOW MARY LOOPS ARE YOU APPLYING IN THIS PUR?

THE ACCELERATION IN THIS RUN WAS: 48 - CHASECASEC.

HOW MANY LOGES ARE YOU APPLYING IN THIS RUN?

THE ACCELEPATION IN THIS PUN WAS: 67.8

CM/SEC/SEC.

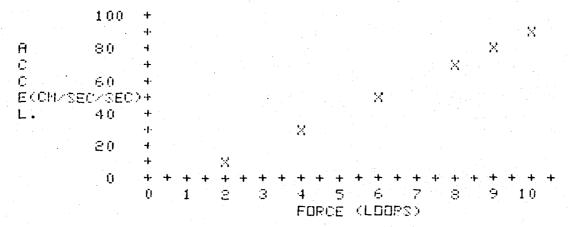
HOW WHAY LOUDS ARE YOU APPLYING IN THIS RUM?

THE ACCELEMATICH IN THIS PUR WAS: 86.4

CM 4580 1080.

IF YOU'D LINE TO MAKE AHOTHER RUH, TYRE YRUMY: IF YOU'D LIKE ME TO CASE A MI. R. TYRE PLOTY. TING

HOW MARY LOOPS ARE YOU APPLYING IN THIS RUN?


THE ACCELERATION IN THIS RUN WAS: 0 CM/SEC/SEC.

IF YOU'D LIKE TO MAKE ANOTHER RUN, TYPE 'RUN'; IF YOU'D LIKE ME TO SRAPH A VS. F, TYPE 'PLOT'. ?RUN

HOW MANY LOOPS ARE YOU APPLYING IN THIS RUN?

THE ACCELERATION IN THIS RUN WAS: 76.8 CM/SEC/SEC.

IF YOU'D LIKE TO MAKE AMOTHER RUN, TYPE 'RUN'; IF YOU'D LIKE ME TO SRAFH A VS. F. TYPE 'PLOT'. ?PLOT

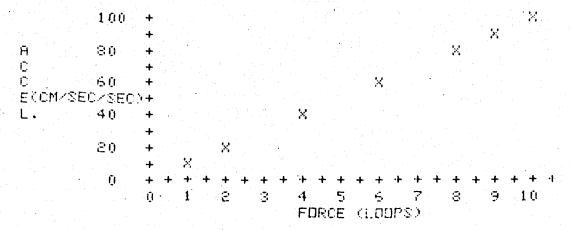
CAN YOU DESERVE ANY REGULARITIES IN THIS GRAPH?

?YES
WHAT KIND OF RELATIONSHIP EXISTS BETWEEN ACCELERATION AND FORCE
(DIRECT OR INVERSE)?
?DIRECT

RIGHT: IN FACT: THERE APPEARS TO BE A LINEAR RELATIONSHIP BETWEEN FORCE AND ACCELERATION IF WE OVERLOOK THE IRREGULARITIES PRODALLY CAUSED BY EMPERIMENTAL ERROR.

MOTE THAT THE GRAPH DOES NOT PASS THROUGH THE DRIGIN. APPARENTLY THE CART DOES NOT ACCELERATE WHEN WE APPLY A SMALL POSITIVE FORCE. WHAT COULD CAUSE THIS?

THERE IS PRICTION LETWEEN THE CART AND THE FLOOR WHICH OPPOSES THE FORCE WE APPLY. STUDY THE GRAPH & DETERMINA THE FORCE OF FRICTION (IN LODRS).


FINE: THE POPCE OF FRICTION IS PERFORENTED BY THE INTERCEPT OF THE GRAP WITH THE FORCE AXIS.

HAD WE USED A CART WITH GREATER PRICTION THAN IN OUR EXPERIMENT WOULD THIS INTERCEPT BE TO THE RIGHT OR LEFT OF ITS PRESENT LOCATION? (TYPE 'RIGHT' OR 'LEFT')
PRIGHT

CORRECT! MEXT. I'M SOINS TO TAKE THE DATA ME COLLECTED AND PLOT THE PESULTANT FORCE ACTING ON THE CART. INSTEAD OF THE FORCE YOU APPLIED IN EACH RUM. (THE RESULTANT OR MET FORCE IS THE FORCE YOU APPLIED MINUS THE FORCE OF FRICTION.)

TYPE IN THE POINT WHERE YOU THINK THE NEW PLOT WILL INTERSECT THE FURCE AXIS.

RIGHT! HERE'S THE NEW GRAPH:

AGAIN. WE SEE A LINEAR RELATIONSHIP SETWEEN FORCE AND ACCELE-RATION. MOTE THAT THOUGH THE INTERCEPT WITH THE FORCE AXIS HAS BEEN MOVED. THE SUDPE OF THE GRAPH HAS NOT CHANGED. PRICTIONAL FORCE DOES NOT APPEAR TO AFFECT THE SLOPE OF THE ACCEL. VS. FORCE GRAPH.

WRITE AN EQUATION TO FIT THIS GRAPH. USE 'A' TO REPRESENT ACCELERATION AND 'F' TO REPRESENT FORCE. USE 'K' TO REPRESENT THE SLUPE (DOM'T BOTHER TO CALCULATE IT). BEGIN THE EQUATION: $A=\ldots$

PIGHT!--BUT WHAT PACTORS WILL CAUSE THE SLOPE TO CHAMSE? WE'VE OBSERVED THAT PRICTION HAS NO EPPECT. WHAT OTHER VARIABLE MIGHT CAUSE THE SLOPE TO CHAMSE? ?MASS

AS WE DESERVED IN THE LAST EMPERIMENT, MASS HAS AN INVENSE RELATION THIS TO ACCELERATION WHEN A CONSTANT POYCE IS APPLIED. IN THE HEAT EMPERIMENT WE'LL CONDUCT A ACCOUNTIESTIVE STUDY UP THIS RELATIONSHIP.

TO IUMNATION WE NOW TOO DEED OUT TOTAL THAT ALCO FRATION IS DIPOLICY PRODUCTION A TO THE NOT FORDS WHEN THE HALS PRINCING CONTROL OF FOUNTIES FOR THE RELIGIOUS HE ALSO FARE FOR SHOULD FOR HE THE HET OF FASON THE FOREST OF THE OUT THE OUT

A SPACECHIP IS ACCELERATING IN SPACE AT LOW/SEC/SEC DUE TO THE FORCE PROVIDED BY ONE SUMEET PUBLIC. SUMEOUS POWER IMPATIONS PACKETS ARE IGNITED SERVICIONS SHEETS HAS SHEET ACCELED, FIRST IN MESSON DUES THE SHIP HOW POWERINGS? 730

GOOD! MADERS AND FREE PARTICISM ARE YOU TO TRY:
IN 10 164 AM DROVER ACCELERATED FROM REST TO MITTEED OF BOOCHASEC
WHEN ACTED UPDA OY MINET FOR CAKEN. AT THE EARL OF THE 101EC
INTERVAL E 1900AND COMPINION ITS OPTAINED STATISTM.
WHAT IS THE SPEED OF THE DEUECT AT THE EARL OF THE FIRST 20 SEC IN
CMASEC?
7400

CORFECTI

YOU HAVE NOW COMPLETED THIS IINDUATED EMPERIMENT. PERHAPS YOU DILL BE AMOS TO LUKE UP THE INVESTIGATION FURTHER AT HOME OF IN YOUR LAR.

AFTER YOU'VE SIGNED OFF THE TERMINAL, ROLL OUT SEVERAL INCHES OF POWER. ON IT LIVE THE SMERCES OF EMBERICANTAL ERROR AS YOU ENVISION THEN GREEKINGHT. INCLUDE THIS PAPER IN YOUR PRIVATES POWER THE CARDENINGHT, VIEW THE REMT FILM LOOP (FORCE & MOTION III), THEN AGE (FORCE).

TO SIGH OFF THE TERMINAL TYPE 'DYE' AND PRESS THE PETURH KEY

DUME

RUN FORCEC

HELLO AGAIN. IN THIS THIRD PROGRAM OF THE SERIES WE WILL STUDY HOW A CONSTANT FORCE ACCELERATES DIFFERENT MASSES. HAVE YOU COMPLETED 'FORCER' AND THEM VIEWED FILM LOOP 'FORCE & MOTION THIS? TYPES

IN THE FIRST EXPERIMENT OF THIS SERIES WE OBSERVED THAT CONSTANT FONCES CAUSE A RODY TO UNDERFOR A CONSTANT ACCELERATION. IN THE LAST EXPERIMENT WE HELD THE MASS CONSTANT ARD OBSERVED WHAT KIND OF RELATIONSHIP BETWEEN ACCELERATION AND FORCE?

RIGHT. NOW TO STUDY HOW ACCELERATION VARIES WHEN THE OBJECT'S MASS IS CHANGED WE'LL TRY TO HOLD ALL OTHER VARIABLES CON-STAIT. WE'LL APPLY THE SAME FORCE TO THE CART IN ALL PUNS BY KEEPINS ONE LOOP OF RUSSER STRETCHED A CONSTANT LENGTH. (WE CAN STRETCH DUR LOOP BETWEEN 50 AND 100CM.)

TYPE BELOW THE AMOUNT OF STRETCH IN CM YOU WILL APPLY DURING THE RUNS THROUGHOUT THIS EXPERIMENT. ?75

WE CAN VARY THE CART'S MASS BY USING DIFFERENT NUMBERS OF IDENTICAL BRICKS FOR A LOAD. THE MASS OF THE EMPTY CART WE'LL USE HAS BEEN ADJUSTED TO EQUAL THE MASS OF ONE BRICK.

YOU SPECIFY THE NUMBER OF BRICKS YOU'LL USE FOR A LOAD IN EACH TRIAL AND MAKE THE SIMULATED RUN. THEN I'LL DETERMINE ACCELERATION FROM THE TICKER TAPE AND PLOT A GRAPH OF ACCELERATION V. MASS. FEMEMBER, THE MASS YOU'RE ACCELERATING IS ONE BRICK LARGER THAN THE LOAD YOU SPECIFY SINCE THE CART HAS A MASS OF I BRICK.

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS RUN?

YOU WILL FIND THAT IF YOUR CART HAS NO BRICKS ON IT AND YOU APPLY A FORCE OF 75 OM THE CART WILL TAKE OFF SO FAST YOU WON'T BE ABLE TO APPLY A CONSTANT FORCE. I SUGGEST AT LEAST 1 BRICK FOR A LOAD.
SO, AGAIN --

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS RUN?

FOR YOUR TOTAL MASS OF 2 BRICKS, THE ACCELERATION WAS: 30 CM/SEC/SEC. [1/A= .033]

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS PUN?

FOR YOUR TOTAL MASS OF 3 DRICKS, THE ACCELERATION WAD: 20 CMXSECXCOO. 11/A= .05

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS RUN?

FOR YOUR TOTAL MASS OF 4 BRICKS: THE ACCELERATION WAS: 15 CM/SEC/SEC. [1/A= .066]

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS RUN? $^{\circ}4$

FOR YOUR TOTAL MASS OF 5 BRICKS, THE ACCELERATION WAS: 12 CM/SEC/SEC. 01/A= .083 1

HOW MANY ERICKS ARE YOU USING FOR A LOAD IN THIS RUN?

FOR YOUR TOTAL MASS OF 10 BRICKS, THE ACCELERATION WAS: 6 CM/SEC/SEC. [1/A= .166]

IF YOU'D LIKE TO MAKE ANOTHER RUN TYPE 'RUN'; IF YOU'D LIKE ME TO GRAPH A VERSUS M TYPE 'PLOT'.

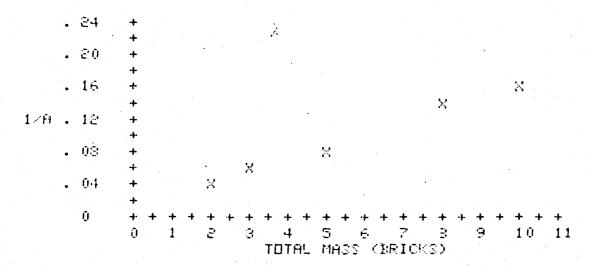
YOU DIDN'T TYPE 'PLOT' OR 'RUM'. AGAIN, WHICH SHOULD WE DO? ?RUM

HOW MANY BRICKS ARE YOU USING FOR A LOAD IN THIS PUN?

FOR YOUR TOTAL MASS OF 8 BRICKS, THE ACCELERATION WAS: 7.5 CM/SEC/SEC. [1/A= .133]

IF YOU'D LIKE TO MAKE ANOTHER RUN TYPE 'RUN'; IF YOU'D LIKE ME TO GRAPH A VERSUS M TYPE 'PLOT'. ?PLOT

Ĥ 24 O C 20 X Ε 16 × E(CM/SEC/SEC)+ R 12 × Ħ T 9 × Ι 4 14 Ũ + + + + + + + + + + + 6 7 3 2 3 4 5 9 - 10TOTAL MASS (BRICKS)


STUDY THE GRAPH CAREFULLY. CAN YOU OBSERVE ANY REGULARITIES?

WHAT KIND OF RELATIONSHIP EXESTS BETWEEN ACCELERATION AND MASS (DIPECTOR INVERSE)?
SINVERSE

RIGHT: AS THE CART'S MASS GETS LARGER THE ACCELERATION GETS SMALLER UNDER THE INFLUENCE OF A CONTINUT YORGE.

DUR NEMT TASK IS TO FIND AN ALGEBRAIC EMPRESSION FOR THE PELATIONSHIP ESTUDEN ACCELERATION AND MASS. A STUDY OF DUR GRAPH SUCKESTS THAT IT MIGHT BE A 1ST POWER INVERSE RELATION-SHIP, THAT IS: ACCEL. IS DIRECTLY PROPORTIONAL TO 1/MASS, OF MASS IS DIRECTLY PROPORTIONAL TO 1/MASS, OUT TRIS PREDICTION 1 WILL ALDI A NEW GRAPH OF 1/A VERSUS MASS FOR EACH OF DUR RIGHS USING THE PATA WE COLLECTED.

HERE'S THE HEW GRAPH:

MMA! VERY INTERESTING. THIS GRAPH DOES MAKE THE RELATIONSHIP MORE DEVIDUO. DO YOU SEE WHAT I MEAN? TYPES

THE LINEAR SMAPH INDICATES A DIRECT RELATIONSHIP BETWEEN THE TWO VARIABLES WE'VE PLOTTED.

WRITE AN FOUNTION TO FIT THIS GRAPH. DO NOT BOTHER TO CALCULATE THE SLUPE; INSIGHD REPRESENT THE SLUPE WITH THE CONSTANT $\angle K \triangle$. BEGIN THE EQUATION: $1 \angle A = \ldots$

RIGHT! THERE IS A DIRECT RELATIONSHIP DETWEEN 1/A AND MASS: K COULD DE COURSE BE REPLACED BY THE NUMERICAL VALUE FOR THE SLOPE OF THE LINE.

HERE IS A PRODUCT FOR YOU TO TRY USING YOUR GRAPH AND THE SIMULATED GRAPATUS: A ROCK OF UNKNOWN MASS IS PLACED ON BUR UNLOADED CART. YOU MAKE A RUN MITH IT APPLYING THE SAME FORCE AS YOU DID IN THE OTHER RUNS. MY AMALYSIS OF THE TAPE INDI-CATES AN ACCELERATION OF 15.0CM/SEC/SEC. WHAT IS THE TOTAL MASS OF ROCK AND CART (TO THE HEAREST 10TH BRICK)?

OR: THE MASS OF FOCK AND CART IS: 4 BRICKS. WHAT IS THE MASS OF THE POCK ALONES ?3

ERICLA 1895 OF HE OBJECT.

TO SUMMARIZE, WE CAN SEE FROM THE GRAPHS OF OUR DATA THAT THE ACCELERATION OF AN OBJECT IS INVERSELY PROPORTIONAL TO ITS INSERTIAL MASS WHEN A CONSTANT FORCE IS APPLIED, AND A THE EQUATION YOU WROTE FOR THE RELATIONSHIP IS: 1/A=KM.

HOW TRY THIS PROSLEM:
A CAR HAS A MAXIMUM ACCELERATION OF 8 MISECUSEC. IF THE CAR TOWS
AHOTHER CAR OF IDENTICAL MASS AND DESIGN. WHAT WILL BE THE MAXIMUM
ACCEL. IN MUSECUSEC?
74

GOOD! NOW HERE'S ANOTHER PROPLEM:
MASS A ACCELERATES AT 80 FT/SEC/SEC AND MASS B ACCELERATES AT
20 FT/SEC/SEC WHEN IDENTICAL FUNCES ARE APPLIED.
WHAT IS THE RATIO: MASS A/MASS B?
74/1

NO. THE PROBLEM ASKS FOR THE RATIO OF MASS AZMASS B. THIS IS EQUIVALENT TO ACCEL.BZACCEL.A DUE TO THE INVERSE RELATIONSHIP.

TRY THE QUESTION AGAIN.
WHAT IS THE RATIO: MASS ARMASS B7

CORRECT!

YOU HAVE NOW COMPLETED THIS SIMULATED EMPERIMENT. PERHAPS YOU WILL SE ABLE TO PURSUE THE INVESTIGATION FURTHER AT HOME OR IN YOUR LAB.

AFTER YOU'VE SIGNED OFF THE TERMINAL FOLL OUT SEVERAL EXTRA INCHESTOF PAPER. ON IT LIST THE SOURCES OF EXPERIMENTAL EXTOR AS YOU ENVISION THEM AND STATE THE MAJOR CONCLUSIONS YOU CAN DRAW FROM THE EXPERIMENT. INCLUDE THIS PAPER IN YOUR PHYSICS NOTEFOOK.

AS SOON AS YOU HAVE THE OPPORTUNITY VIEW THE NEXT FILM LOOP 'FORCE'S MOTION IV' AND PUR 'FORCED'.

TO SIGH OFF THE TERMINAL TYPE IBYET AND PRESS THE RETURN KEY.

TIO! HE

FORCED

HI! IN THIS FINAL PROGRAM OF THE SERIES WE WILL DISCUSS WHAT WE'VE LEARNED ASOUT FORCE AND MOTION AND INTRODUCE A SYSTEM OF UNITS IN COMMON USE. HAVE YOU COMPLETED 'FORCEC' AND THEN STOP HEL-E001:E:3

05-14-74 02:42 PM PDRT 017 S STOP GET-FORCED RUN FORCED

HI! IN THIS FIRST PROGRAM OF THE SERIES WE WILL DISCUSS WHAT WE'VE LEARNED ACTUT FORCE AND MUTION AND INTRODUCE A SYSTEM OF UNITS IN COMMON USE. HAVE YOU COMPLETED 'FORCEC' AND THEN VIEWED FILM LOGS 'FORCE & MUTION IV'?

?YES

IN THE FIRST EMPERIMENT WE OBSERVED THAT A CONSTANT FORCE CAUSES A SOLW TO GALVEST A CONSTANT ACCELERATION. IN THE SHD EMPERIMENT WE OBSERVED THAT ACCELERATION WAS DIRECTLY PREMORTIONAL TO THE MET FORCE. IN THE SRD EMPERIMENT ME OBSERVED WHAT KIND OF PELATIONSHIP BETWEEN ACCELERATION AND MAIST

CORRECT! WE MAY WRITE THIS LAST STATEMENT AS:

- 1) M IS DIRECTLY PROPORTICION TO 1/A OR
- 2) A 15 DIRECTLY PROPORTIONAL TO 1/M

FROM THE RESULTS OF EXPERIMENT & WE CAN WRITE:

3) A IS DIRECTLY PROPORTIONAL TO F

STATEMENTS (2) % (3) CON BE COMBINED AND WRITTEN AS: A IS DIRECTLY PROPORTIONAL TO FXM

AN EQUIVALENT STATEMENT IS:
MA IS DIRECTLY PER CONTINUE TO F
OR: F IS DIRECTLY PRODUCTIONAL TO MA

IN COUNTION FORM:

I'VE JUST TYPED A LOT OF INFORMATION HERE. READ IT CAREFULLY AND TYPE 1601 WHEN YOU WHAT ME TO CONTINUE.

IN THE EQUATION K IS A CONSTANT OF PROPORTIONALITY AND ITS NUMERICAL VALUE DEPENDS UPON THE UNITS USED TO MEASURE FORCE, MASS, AND ACCELERATION. IT MOULD HAVE A SPECIFIC VALUE IF WE CONTINUED TO MEASURE FORCE IN 'BANDS' AND MASS IN 'BRICKS'. THE UNITS WE USED HAPPENED TO BE CONVENIENT FOR US, BUT THEY ARE NOT IN COMMON USE IN THE WORLD. THE SOUATION, OFTEN REFERRED TO AS HEWTON'S END LAW, IS PERHAPS THE MOST FUNDAMENTAL EQUATION IN CLASSICAL MECHANICS, AND THE UNIT OF FORCE CONMONLY USED IS DEFINED SO THAT K IN THE EQUATION = 1.

IN SCIENTIFIC WORK A VERY COMMON UNIT OF MASS IN USE TODAY IS THE KILDGRAM (KG). THE BASIC UNIT OF FORCE WILL CAUSE A MASS OF 1 KILDGRAM TO ACCELERATE AT 1M/SEC/SEC. THIS UNIT OF FORCE IS CALLED THE HEWTON (N). IN OTHER MOROS A FORCE OF 1N WILL CAUSE A MASS OF 1KG TO ACCELERATE 1M/SEC/SEC. USING THESE UNITS THE EQUATION IS WRITTEN:

F=MA

1N=1K6 M/SEC/SEC

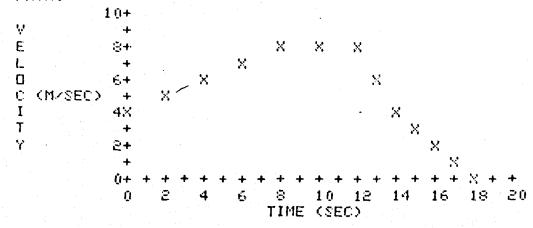
TRY THE FOLLOWING PROPLEM USING THE MKS (METER.KILDGRAM, SECOND) SYSTEM OF UNITS. A GOOKG SPACESHIP IS PROPELLED BY A ROCKET ENGINE. ITS ACCELERATION IS SMUSECUSEC. WHAT IS THE NET FORCE (IN NEWTONS) ACTING ON THE SPACESHIP? \$1200

CORRECT! HOW HERE'S A SLIGHT VARIATION OF THE SAME PROBLEM: AN SOKE ASTROMAUT IN EQUILIBRIUM OUTSIDE HIS SPACESHIP RECEIVES A 40H FORCE FROM A PROPULSION UST ATTROHED TO HIM. WHAT ACCEL. (IN MYSECYSEC) DOES HE EXPERIENCE? ?.5

RIGHT! IT IS IMPORTANT TO POINT OUT AS I DID IN EXP. 2 THAT F REPRESENTS THE VECTOR SUM OF ALL FORCES ACTING ON THE OBJECT.

TRY THIS PROBLEM AGAIN WHICH INVOLVES NEGATIVE ACCELERATION: A 2000 KG CAP IS TRAVELLING AT A SPEED OF SOMESEC WHEN THE BARKES ARE APPLIED. THE CAR STORS IN 15 SEC. IF WE ASSUME A COH-STANT ACCELERATION, WHAT WAS THE FORCE (IN N) APPLIED BY THE BRAKES?

GOOD! THE MEGATIVE SPAKING FORCE PRODUCED A MEGATIVE ACCEL. IF THE VECTOR SUM OF THE FORCES ON A OBJECT = 0. THEN THE OBJECT WILL UNDESSO O ACCELERATION. IN DYMAN WORDS ITS VELOCITY WILL HOT CHARGE. HERE'S A PRODUCE ON THE SUBJECT: TO PUSH MY STOVE ACROSS MY KITCHEN FLUOR AND A CONSTANT SPEED OF 1M/530, I MUST APPLY A PODGE OF 2504.


WHAT IS THE FRICTIONAL FERCE ACTIOS ON THE STOVE IN HR 2200

TUPE! HOW TRY THIS PROBLEM: A FORCE OF 12M GIVES MASS A AN ACCEL. OF SMYSEC/SEC. WHAT IS THE ACCEL. (IN MYSEC/SEC) WHEN THE TWO ARE FASTEHED TOGETHER AND THE SAME FORCE IS APPLIED?

GUUD!

THE LAST FEW QUESTIONS DEAL WITH THE GRAPH PRINTED IELDW WHICH SHOWS THE VELOCITY OF A 10KG OBJECT ALONG A STRAIGHT PATH.

IN THE NEXT 3 QUESTIONS TYPE IN THE LETTER OF THE BEST RESPONSE:

1. THE NET FORCE ACTING ON THE OBJECT WAS 0 AT: (A) 0 SEC; (B) 4SEC; (C) 10SEC; (D) 13SEC; (E) 16SEC; (F) NOME OF THE ABOVE 70

CORRECT!

2. THE MET FORCE ACTING ON THE OBJECT WAS GREATEST AT:
(A) 0 SEC; (B) 4 SEC; (C) 10 SEC; (D) 13 SEC; (E) 16 SEC;
(F) MOME OF THE APOVE.
?D

500D:

3. THE NET FURCE WAS CONSTANT BETWEEN:(A) 6-9SEC; (B) 9-13SEC; (C) 63-15SEC; (D) 15-18SEC; (E) NOHE OF THE ABOVE ?B

INCOPPECT. THE FORCE IS CONSTANT WHERE THE ACCEL. IS CONSTANT.
REMEMBER THAT THE ACCEL. AT AMY POINT IS THE SLORE OF THE W VERSUS T
GRACH. FIND THE LISTED TIME INTERVAL IN UNION VELDCITY CHARGES AT A
CONSTANT RATE: AND TYPE IN THE CORRECT CHOWER.
20

CORRECT!

4. WHAT WAS THE ACCEL. OF THE OBJECT (IN M/SEC/SEC) AT 6 SEC? 7.5 FINE!

5. DETERMINE THE NET FORCE (IN N) AT 6 SEC. (OBJECT HAS MASS OF 10K6) 760

WRONG. F=MA. MULTIPLY THE MASS(10KG) BY THE ACCEL. CALCULATED IN THE LAST PROBLEM. CHECK YOUR CALCULATIONS AND TYPE IN THE CORRECT ANSWER. 75

VERY NICE,

YOU'LL NOTICE ON THE GRAPH THAT THIS CONSTANT FORCE OF 5N WAS APPLIED FROM OSEC THROUGH 8 SEC. NOW, THE FINAL PRODUCEM:
6. DETERMINE THE FORCE (IN N) ACTING AT 13 SEC.
720

DK! IT'S A GOOD IDEA TO WRITE THIS FORCE AS -20M SINCE THE FORCE IS OPPOSITE THE DIRECTION IN WHICH THE OBJECT IS MOVING.

THE IDEAS ME'VE BEEN DISCUSSING IN THESE FOUR PROGRAMS ARE FUNDAMENTAL IN CLASSICAL MECHANICS. DUR UNDERSTANDING OF THEM HAS BEEN GREATLY ENHANCED BY THE BRILLIAMT INSIGHTS PROVIDED BY GALILED, MEWTON, AND THEIR SUCCESSORS. THE STORY OF THE WORK OF THESE EARLY SCIENTISTS IS FASCINATING READING.
THESE IDEAS PROVIDE A STARTING POINT FOR FURTHER STORY IN MECHANICS. VERY SOON, FOR EXAMPLE, YOU WILL STUDY FALLING RODIES. WHEN A FODY FALLS THE FORCE CAUSING IT TO ACCELERATE IS ITS WEIGHT...

IT HAS BEEN VERY NICE WORKING WITH YOU IN THESE PAST FOUR EXPERIMENTS. PERHAPS WE'LL MEET AGAIN IF SOMEONE WILL WRITE MORE PROGRAMS...?

BEFORE WE PART, YOU'LL HAVE TO TYPE IN THE EQUATION REPRESENTING MENTON'S 2ND LAW WHICH WE DEVELOPED IN THIS PROGRAM.
BEGIN THE EQUATION: F= ... AND DO NOT INCLUDE A MULTIPLICATION SIGN.
PE=MA

AUF WIEDERSEHEN

TO SIGN OFF THE TERMINAL TYPE 'BYE' AND PRESS THE RETURN KEY.

DUGHE

INSTRUCTIONAL OBJECTIVES

technical report 1

GENERAL OBJECTIVES

General instructional objectives of the Force and Motion unit are:

- A. to provide the student with a detailed understanding of Newton's Second Law;
- B. to help the student develop graphical skills and an ability to interpret graphed data;
 - C. to help the student develop inquiry skills;
- D. (for Group I students only) to familiarize the student with the computer.

BEHAVIORAL OBJECTIVES

The instructional objectives may be stated in more specific behavioral form. Prior to beginning the Force and Motion unit the student should have studied certain prerequisite concepts and skills for which the unit does provide reinforcement and a limited amount of assistance in the event of conceptual difficulty. When the student has mastered the entry concepts and skills he will be able to:

- 1. determine the acceleration of an object given data describing its change in velocity;
- 2. describe the velocity and acceleration of an object when no net force is applied (Newton's First Law);

- 3. determine the slope and intercept values when given a linear graph;
- 4. write an equation to fit the data when given a linear graph.

At the <u>completion</u> of the Force and Motion unit the student should have mastered additional concepts and process skills such that he should be able to:

- 5. determine the acceleration given the force applied to an object;
- 6. determine the force acting on an object given its acceleration (in Newtons or in arbitrary force units);
- 7. determine the mass of an object given the force applied and the resulting acceleration;
- 8. determine the applied forces given data describing the velocity of an object at various times;
 - 9. describe the effects of forces on an inertial mass;
- 10. describe the effects of a constant force on the motion of an object;
- 11. determine the frictional force from a graph of force versus acceleration for an object;
- 12. describe the effects of friction on the acceleration of an object when a force is applied;
- 13. determine where velocity, acceleration, and force are maximum, constant, and minimum respectively given a velocity versus time graph;

- 14. fit an equation to a first order inverse relationship;
- 15. plot the velocity of an object as a function of time given a ticker tape pulled by the object through a timer;
- 16. describe the effects of experimental error on the variables under investigation.

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

MESSAGES TO STUDENTS AND TEACHERS

technical report

35

FORCE & MOTION

Computer Simulation

Message to Students

These four computer programs which you are about to use simulate experiments in force and motion. They will help you understand some basic ideas in physics. If you have never used a computer terminal before, don't panic, for it is much less intelligent than you are. It can, however, do some things faster than you can - as you will see. You don't have to know any special computer language to use these programs; it will help though, if you know how to use the English language!!

Typed below are some special instructions which will enable you to use the physics programs which are available in the computer.

- 1. Turn on Power (Power OH)
- 2. Dial ___ and listen for high pitch tone
- 3. Place phone in coupler
- 4. At Keyboard type: HEL ; then press RETURN Key. (If all is well the computer will type: READY
- 5. Type: GET FORCEA, then press RETURN Key
- Type: RUI!

From here on all other instructions will be typed out for you by the computer. Read the messages carefully. Whenever a question mark appears on the left-hand side of the paper and the teletypewriter stops printing, you must type in a response and then press the RETURN key. The computer is looking for short responses in answer to its questions like: DIRECT, or 27, or CONSTANT.

Here are three notes of procedure:

- 1. To represent the number one (1) you must use the key labeled with the numeral I which is located at the left of the top line on the keyboard.
- 2. To represent the quantity zero, you must use the key labeled 0 located at the right of numeral 9 on top line of keyboard.

3. When making your responses, do not type in any extra spaces. (The computer has not been programmed to recognize them in these simulations.)

If you make an error in typing which you wish to correct before you press the RETURN key, one method you may use to correct your answer is: Hit the ESC (ESCAPE) key which is located in the upper left corner of the keyboard and then retype the correct answer.

To terminate: Type BYE then press RETURN key. Then Push Power ON switch and light will go off.

Make appropriate entry in LUNET LOG (time is expressed in minutes on data sheet such as: "006 minutes of terminal time."

The four Force and Motion programs are named: FORCEA; FORCEB; FORCEC; FORCED.

FORCE & MOTION

Computer Simulations

To: Physics Teachers

SUBJECT: Instructions regarding students whose programs have been terminated due to poor understanding of a concept.

A non threatening attitude should exist such that students whose programs have been terminated due to poor understanding of a concept readily come for consultation with their teachers. After discussing the concept thoroughly with the student, the teacher may recommend one of the following three options:

- 1. The student should rerun the entire program from the beginning in order to gain additional experience.
- 2. The student should proceed with the next program in the series if the teacher feels that the student understands the concept well and would not profit from rerunning the program.
- The student should begin again, in the middle of the program which was terminated, and complete the remaining part of the program.

The following table indicates line numbers at which students can restart their programs. The instructions to be typed into the computer after signing on are, e.g.

GET-FORCEA RUN-910

Program.	Starting Point	RUN
FORCEA	Problem at the end of the program	910
FORCEB	Problems at the end of the program	1260
FORCEC	Problems at the end of the program	1270
FORCED	80 kg astronaut problem	460
	Braking car problem	580
	Kitchen stove problem	700
	2 masses fastened together	800
	Graph problems	880

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

EVALUATION INSTRUMENTS

technical report 1

Evaluation Instruments

The instruments used in data collection for this unit include a criterion-referenced pretest, a criterion-referenced posttest, and a student attitude survey. A description of the evaluation instrument follows:

Pretest. This examination is a forty item, multiple choice response, criterion-referenced test which measures cognitive skills. Test items were adapted from several sources. The largest number of items were adapted from a set of tests developed by Harvard Project Physics. 3

Other items were written by the author, and some were constructed from problems in the PSSC text. In a study conducted by the author, the KR21 reliability estimate was .85. The test may be administered to assess the entry behaviors of the students participating in the unit.

Posttest. This final examination is an alternate form of the Pretest. Numerical values in the items and the names of objects described in the test have been changed from those in the Pretest; also the item sequence is changed. Items on the test measure the attainment of the behavioral objectives specified in the objectives section of this report. The KR₂₀ reliability estimate is .78. The test measures the student cognitive growth attained through the unit when his score is contrasted with that on the Pretest.

³ Harvard Project Physics. <u>Tests</u>, <u>Unit I</u>. New York: Holt, Rinehart, and Winston, Inc., 1968.

⁴ Physical Science Study Committee, op. cit., p. 332-334.

Student Attitude Survey. This survey was designed to assess the student's attitudes toward the method of presentation of the unit. The majority of items in the survey were adapted from items on an instrument developed to measure student attitudes toward Computer Assisted Instruction by Bobby R. Brown. 5

⁵ Bobby R. Brown. "Student Attitude Toward Computer-Assisted Instruction." Computer-Assisted Instruction Center, Florida State University, Tallahassee, Florida.

FORCE & MOTION

TEST

<u>DIRECTIONS</u>: This is a 30 minute test. Do not open this test booklet until you are asked to do so.

When you do write on the answer sheet, be sure to use only an ordinary #2 pencil. No ink or ball point pans may be used.

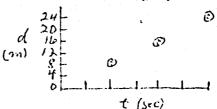
Turn your answer sheet so that the blue striped area is on your right. In the upper left corner, write in the name of the school and your instructor on the appropriate lines. On the line labelled CITY write in the date.

In the upper right corner you will see a group of columns labelled "Print your name in the boxes provided...". Print your last name, your first name, and your middle initial in the boxes provided. If there are extra boxes, leave them blank.

In the lower right section of the answer sheet, print your GRADE, BIRTH DATE, and SEX in the columns provided.

Go down the column under each of the boxes in which you have entered a letter and blacken the space that contains the letter.

Make sure that all marks on the answer sheet are black and heavy and completely fill the answer spaces. Do not place any marks on the test booklet.


Answer all questions in the test by marking the letter on the answer sheet corresponding to the one best answer.

DO NOT OPEN THIS TEXT BOOKLET UNTIL YOU ARE ASKED TO DO SO.

1. An experiment yielded the data given in the table and graph below.

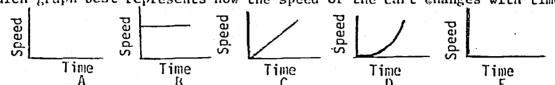
t (sec)	<u>d (m)</u>
0	0
2	. 8
4	16
6	24

time

If these data are expressed as an equation, d=kt, the value of k is

- A. 2 m/sec
- B. 2 sec/m
- C. 4 m/sec
- D. 4 sec/m
- E. 0.5 m/sec
- 2. Which of the following increases with time if a car moves with uniform velocity?
 - A. direction
 - B. displacement
 - C. acceleration
 - D. applied force
 - E. average velocity

Questions 3-7 refer to the graph at the right.

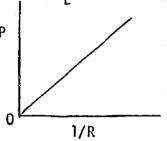

- 3. The speed is greatest at the time corresponding to point
 - A. a
- D. e
- B. c
- E. k
- C. d
- 4. The magnitude of the acceleration is greatest in the time interval
 - A. a to c
- \mathbf{D} . \mathbf{g} to $\mathbf{1}$
- B. c to e
- E. i to k
- C. e to g
- A. a to c
- D. g to i

The applied force was 0 in the time interval

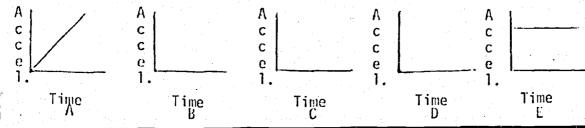
- B. c to e
- E. i to k
- C. e to g
- 6. The magnitude of the applied force is greatest in the time interval
 - A. a to c
- D. g to i
- B. c to e
- E. i to k
- c. e to g
- 7. The applied force reaches its maximum negative value in the time interval
 - A. a to c
- D. g to i
- B. c to e
- E. i to k
- C. e to g

- 8. A car has a maximum acceleration of 4 m/sec². If it tows a second car having the same mass and design, the maximu acceleration will be
 - A. ' 0 m/sec2
 - B. 2 m/sec^2
 - C. 4 m/sec^2
 - D. 6 π/\sec^2
 - E. 8 m/sec^2
- 9. A cart, initially at rest, is pulled with a constant, unbalanced force.
 Which graph best represents how the speed of the cart changes with time?

10. The equation of the line for the graph at the right is



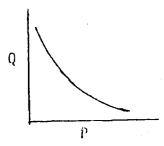
D.
$$P = K\sqrt{R}$$


$$B \cdot P = KR$$

E.
$$P - KR^2$$

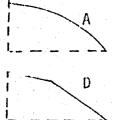
C.
$$P = \frac{K}{R^2}$$

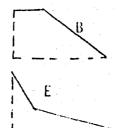
- 11. A man pushes a puck on a frictionless horizontal surface with a force of 20 newtons. The resulting acceleration is 8.0 m/sec². What is the mass of the puck?
 - A. 0.4 kg
 - B. 2.5 kg
 - C. 4.0 kg
 - D. 10 kg
 - E. 40 kg
- 12. A car is slowed by a braking force that it comes to rest in 20 sec. If the car travels at the same speed and the braking force is doubled,
 - A. the acceleration will be for times the previous value.
 - B. the change in velocity will be doubled.
 - C. the car will come to rest in 10 seconds.
 - D. the car will come to rest in 40 seconds.
 - E. the car will come to rest in half the distance.
- 13. To push my desk across the floor at a constant speed of 2m/sec, I must apply a force of 200 newtons. The force of friction acting on the desk is
 - A. O newtons
- D. 400 newtons
- B. 100 newtons
- E. Impossible to determine from the information given
- C. 200 newtons
- 14. Which of the following graphs shows the effects of a constant force?

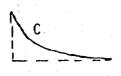


- 15. An astronaut in space gives a sudden push to a box that sends it away from him. Consider the following statements (assume friction is negligible).
 - 1. The force exerted on the box by the astronaut is equal in magnitude to the force exterted on the astronaut by the box.
 - 2. During the push the acceleration of the astronaut is equal in magnitude to the acceleration of the box.
 - 3. The astronaut will accelerate for the same length of time as the box.

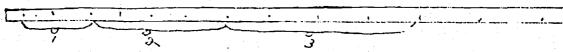
Which of the statements is true if the astronaut and the box have the same mass?


- A. 1 only
- D. 2 and 3 only
- B. 2 only
- E. 1, 2, and 3
- C. 3 only
- 16. For the graph shown on the right, indicate the action you would take in order to work toward finding the relationship?

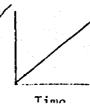



- A. Square the P variable and graph Q vs. P2
- B. Take square root of P variable and graph Q vs. VP
- C. No additionnal graph is needed.
- D. Take inverse of P variable and graph Q vs. 1/P
- E. Take square root of Q variable and graph \sqrt{Q} vs. P
- 17. Measurements made on a ball rolling down a hill of unknown shape provided the following data:

Time	Instantaneous Speed		
0 sec	0 m/sec		
1	6		
2	12		
3	18		
4	20		
5	22		
6	24		


Which of the following diagrams represents the shape of the hill?

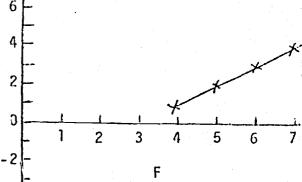
1.8.



The graph most nearly describing the motion on the ticker tape above from the beginning of interval 2 is:

Time

Time



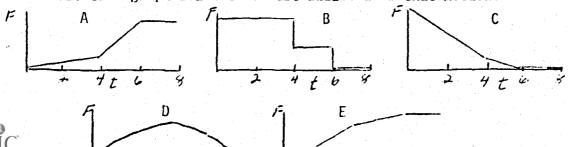
ERIC
Full Text Provided by ERIC

- 19. The acceleration of an object may be doubled by
 - A. doubling its mass
 - B. doubling its velocity
 - C. doubling its weight
 - D. doubling the net force acting upon it
 - E. none of the above
- 20. A railroad passenger car is at rest in a railway station. A boy sitting in the car flips a dime into the air; the dime hits the floor. Later, when the car is moving at a high constant speed, he flips the dime again in exactly the same way. Where does the dime hit the floor?
 - A. At the same spot on the floor as before
 - B. Ahead of where it hit before
 - C. Behind where it hit before
 - D. Impossible to determine from the information given

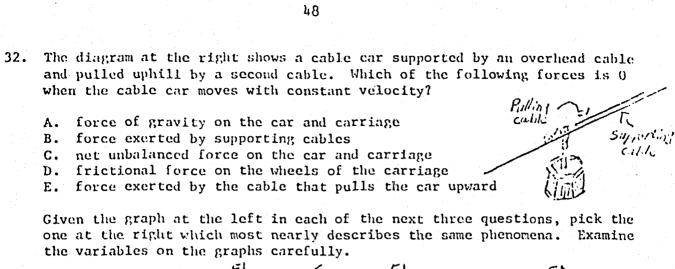
Questions 21 - 24 refer to the graph at the right. In each of several trials, a cart was pulled with a different number of equally-stretched, identical rubber bands. A constant acceleration was observed in each trial.

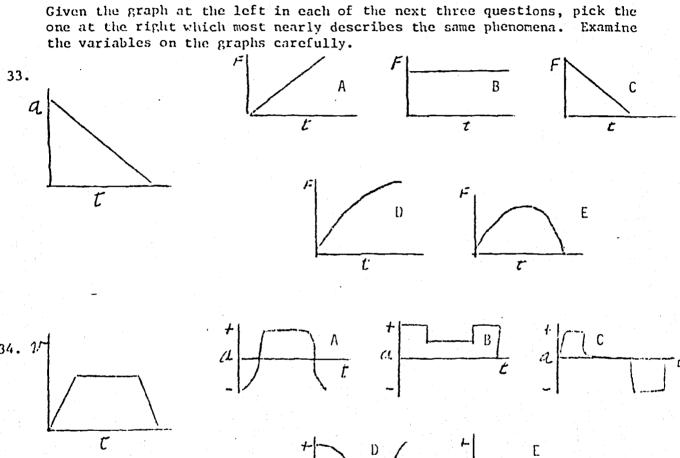
21. From the graph and your knowledge of the system, determine the number of bands of frictional force in the system.

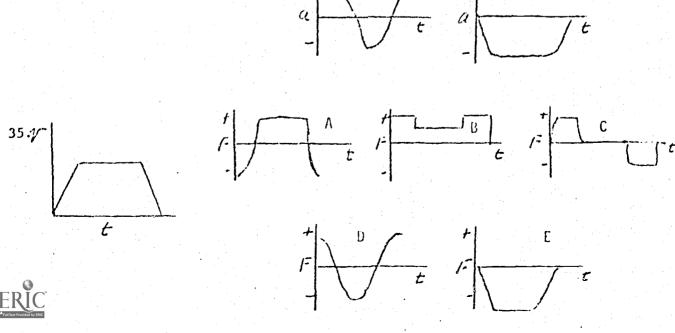
- A. 0
- B. 1
- C. 2
- D. 3
- E. Impossible to determine from the information given.
- 22. From your knowledge of the system and from the graph, predict the acceleration of the cort when a force of two bands is applied.
 - A. 2 m/sec/sec
 - B. -2 m/sec/sec
 - C. 1 m/sec/sec
 - D. -1 m/sec/sec
 - E. 0 m/sec/sec
- 23. If we change the surface on which the cart is pulled which of the following characteristics of the graph will probably change?
 - A. Slope and F-intercept
 - B. F-intercept only
 - C. Slope only
 - D. Neither the slope nor the F-intercept will chage
 - E. None of the above
- 24. An extrapolation of the graph produces an intercept on the force axis which is not 0. What does this indicate?
 - A. The mass of the cart was neglected
 - B. There was a deviation from Newton's Laws
 - C. There was another force acting in the direction of motion
 - D. There was another force acting opposite the direction of motion
 - E. None of the above

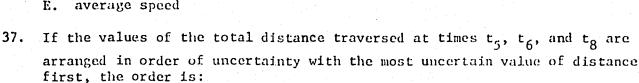


- 25. A 1000 kg car is travelling at 40 m/sec when the brakes are applied. If the car stops in 10 sec, the average force applied to stop the car is
 - A. 1000 newtons
 - B. 25 newtons


D. 400,000 newtons


C. 250 newtons


- E. none of the above
- 26. All except one of the following require the application of a net force. Which one is the exception?
 - A. to maintain an object in uniform circular motion.
 - B. to change an object from a state of rest to a state of motion
 - C. to change an object's speed without changing its direction of motion
 - D. to change an object's direction of motion without changing its speed
 - E. to maintain an object in motion at a constant velocity
- 27. A book is sitting at rest on a table. Which of the following statements best describes this situation?
 - A. There are no forces acting on the book.
 - B. The book is at rest in any coordinate system.
 - C. The book excerts no force on the table.
 - D. There are many forces acting on the book, but they balance each other.
 - E. None of the above.
- 28. When the force applied to an object is constant the object's acceleration and mass are
 - A. directly proportional
 - B. equal
 - C. unrelated
 - D. 0
 - E. inversely proportional
- 29. When the net force acting on a cart equals 0, the cart
 - A. must be at rest
 - B. may be in motion
 - C. may be speeding up
 - D. may be slowing down
 - E. none of the above
- 30. A plane having a mass of 10,000 kg. is launched from a catapult in 2.0 sec by a force of 400,000 newtons. Its average acceleration during launch was
 - A. 40 cm/sec²
 - B. $1/40 \text{ m/sec}^2$
 - $C. 400 \text{ m/sec}^2$
 - D. $1/400 \text{ m/sec}^2$
 - E. 40 m/sec²
- 31. Given the velocity vs. time data at the right, select the force vs. time graph below that best illustrates that motion.

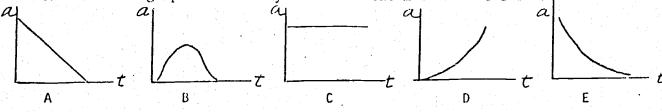


The graph at the right shows the relationship between the time and the total distance traversed by a glider moving on a nearly frictionless air track. Points P2 P_4 , and P_6 represent the experimental measurements.

Total Distance The dotted curve is a smooth curve drawn through these Questions 36 and 37 refer to this graph.

The slope of the curve at t represents the

- 36. total distance traversed
 - rate of change of speed
 - instantaneous speed C.
 - acceleration
 - average speed Ε.



to to ty to to to to

Total Elipsed Time (Sce)

$$\Lambda$$
, t_5 t_6 t_8

- A player kicks a .5 kg ball so that it acquires a speed of 20 m/sec in .4 sec. What was the average force applied to the ball during the kick?
 - Λ. 4 newtons
 - 2.5 newtons В.
 - 25 newtons C.
 - 100 newtons D.
 - 10 newtons
- A low-friction cart is filled with sand and a constant force is applied. As the cart moves, the sand falls out through a hole in the bottom of the cart. Which graph most nearly describes the motion of the cart?

- Car A has a mass of 400 kg; car B has a mass of 1200 kg. If both cars are given the same acceleration, what is the ratio of the force applied to car Λ over the force applied to car 8?
 - Α. 3
 - FI . 1
 - C. .33
 - D. .67
 - E. 0

FORCE & MOTION

TEST

<u>DIRECTIONS</u>: This is a 30 minute test. Please do not open the test booklet until you are asked to do so.

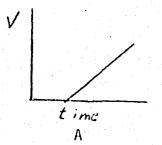
When you do write on the answer sheet, be sure to use only an ordinary #2 pencil. No ink or ball point pens may be used.

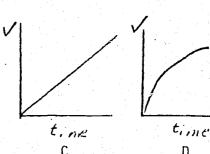
Turn your answer sheet so that the blue striped area is on your right. In the upper right corner you will see a group of columns labelled "Print your name in the boxes provided ...". Print your last name, your first name, and your middle initial in the boxes provided. If there are extra boxes, leave them blank.

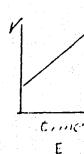
Go down the column under each of the boxes in which you have entered a letter and blacken the space that contains the letter. Do this for your last name, your first name, and your middle initial.

Make sure that all marks on the answer sheet are black and heavy and completely fill the answer spaces. Do not place any marks on the test booklet.

Answer all questions in the test by marking the letter on the answer sheet corresponding to the one best answer.


PLEASE DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO.

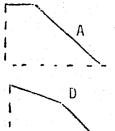

- 1. When the net force acting on a car equals 0, the car
 - A. must be at rest
 - B. may be in motion
 - C. may be speeding up
 - D. may be slowing down
 - E. none of the above
- 2. This test paper is sitting at rest on your desk. Which of the following statements best describes this situation?
 - A. There are no forces acting on your paper.
 - B. Your paper is at rest in any coordinate system.
 - C. Your paper exerts no force on the desk.
 - D. There are many forces acting on your paper, but they balance each other.
 - E. None of the above.
- 3. All except one of the following require the application of a net force. Which one is the exception?
 - A. to change an object from a state of rest to a state of motion
 - B. to maintain an object in motion at a constant velocity
 - C. to change an object's speed without changing its direction of motion
 - D. to maintain an object in uniform circular motion.
 - E. to change an object's direction of motion without changing its speed
- 4. The diagram at the right shows a cable car supported by an overhead cable and pulled uphill by a second cable. Which of the following forces is 0 when the cable car moves with constant velocity?
 - A. net unbalanced force on the car and carriage
 - B. frictional force on the wheels of the carriage
 - C. force of gravity on the car and carriage
 - D. force exerted by supporting cables
 - E. force exerted by the cable that pulls the car upward
- 5. A subway car is at rest in a subway station. A boy sitting in the car flips a dime into the air; the dime hits the floor. Later, when the car is moving over a straight, level section of track at a high constant speed, he flips the dime again in exactly the same way. Where does the dime hit the floor?
 - A. at the same spot on the floor as before
 - B. ahead of where it hit before
 - C. behind where it hit before
 - D. impossible to determine from the information given
 - E. none of the above

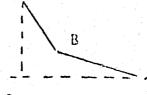

6.

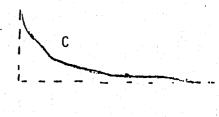
The graph most nearly describing the motion shown on the ticker tape above from the beginning of interval 2 is:

t me

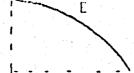
Supporting

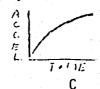

Cubl


U

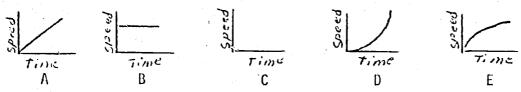

- 7. When the force applied to an object is constant, the object's acceleration and mass are
 - A. directly proportional
 - B. equal
 - C. inversely proportional
 - D. unrelated
 - E. 0
- 8. The acceleration of an object may be tripled by
 - A. tripling its mass
 - B. tripling its velocity
 - C. tripling its weight
 - D. tripling the net force acting upon it
 - E. none of the above
- 9. Which of the following increases with time if an object moves with uniform velocity?
 - A. applied force
 - B. average velocity
 - C. acceleration
 - D. direction
 - E. displacement
- 10. Measurements made on a ball rolling down a hill of unknown shape provided the following data:

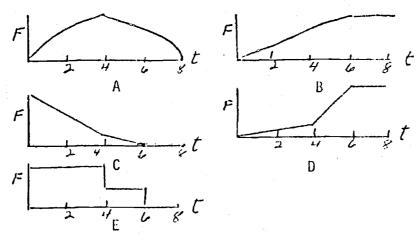
	Instantaneous
Time	Speed
0 sec	0 m/sec
1	6
2	12
3	18
4	20
5	22
6	24

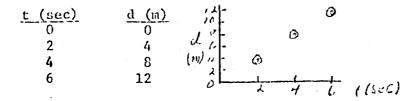

Which of the following diagrams represents the shape of the hill?


11 Which of the Co

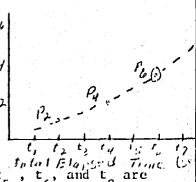
11. Which of the following graphs shows the effects of a constant force?






12. A car initially at rest, is pulled with a constant, unbalanced force.
Which graph best represents how the speed of the cart changes with time?

13. Given the velocity vs. time data at the right, select the force vs. time graph below that best illustrates that motion.

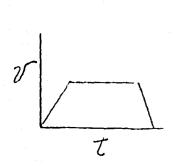


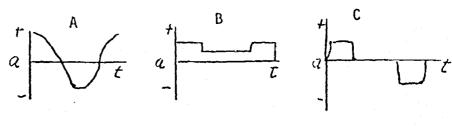
14. An experiment yielded the data given in the table and graph below.

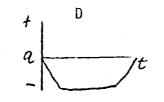
- If these data are expressed as an equation, d=kt, the value of k is
- A. 1 m/sec
- B. 1 sec/m
- C. 2 m/sec
- D. 2 sec/m
- E. 0.5 m/sec

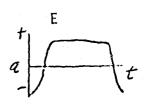
The graph at the right shows the relationship between the time and the total distance traversed by a glider . P4 moving on a nearly frictionless air track. Points P2, P4, and P6 represent the experimental measurements. . Phase dotted curve is a smooth curve drawn through these points. Questions 15 and 16 refer to this graph.

- 15. If the values of the total distance traversed at times t_5 , t_6 , and t_8 are arranged in order of uncertainty with the most uncertain value of distance first, the order is
 - Λ. t₅ t₆ t₈
 - B. t₆ t₈ t₅
 - C. t to t
 - D. t₆ t₅ t₈
 - F + + +

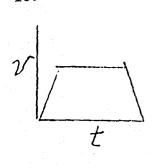


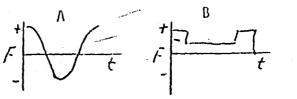

- The slope of the curve at t_4 represents the A. total distance traversed 16.

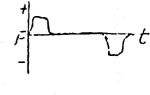

 - B. instantaneous speed
 - C. acceleration
 - D. rate of change of speed
 - E. average speed

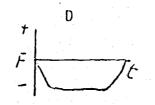

Given the graph at the left in each of the next three questions, pick the one at the right which most nearly descirbes the same phenomena. Examine the variables on the graphs carefully.

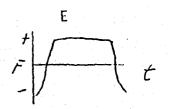
17.

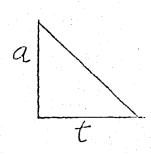


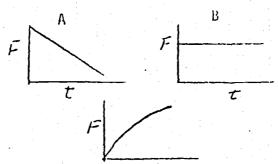


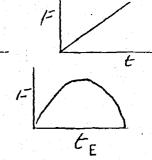




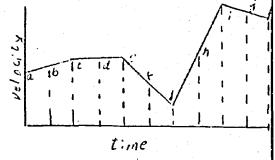

18.







19.



Questions 20 - 24 refer to the graph at the right.

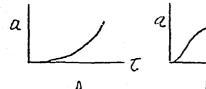
- 20. The magnitude of the acceleration is greatest in the time interval
 - D. g to i Λ . a to c i to k Ε. В. c to e
 - C. e to g

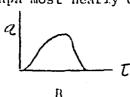
- The speed is greatest at the time corresponding to point 21.
 - В.
- D. 1 E. k
- C. h

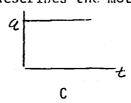
ß

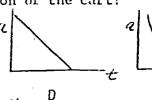
- 22. The magnitude of the supplied force is greatest in the time interval
 - Λ . a to c D. g to i
 - i to k B. c to e Ε.
 - C. e to g
- 23. The applied force was 0 in the time interval

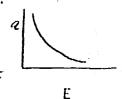
g to i

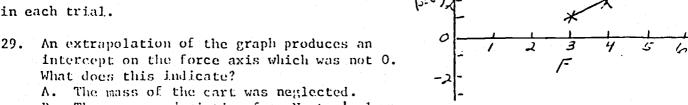

- a to c D.
- B. c to e Ε. i to k
- C. e to g
- 24. The applied force reached its maximum negative value in the time interval
 - a to c D. g to i
 - B. c to e E. i to k
 - C. e to g
- To push my desk across the floor at a constant speed of 2 m/see; I must apply a force of 150 newtons. The force of friction acting on the desk is
 - ٠٨. 0 newtons D. 300 newtons
 - 75 newtons D. Impossible to determine from the information given В.
 - C. 150 newtons
- An ice skater gives a sudden push to a sled that sends it sliding away from him. Consider the following statements (assume friction is negligible).
 - The force exerted on the sled by the skater is equal in magnitude to the force exerted on the skater by the sled.
 - During the push the acceleration of the skater is equal in magnitude to the acceleration of the sled.
 - The skater will accelerate for the same length of time as the sled.


Which of the statements is true if the skater and the sled have the same mass?


- Α. 1 only
- 2 only В.
- C. 3 only
- D. 2 and 3 only
- E. 1, 2, and 3



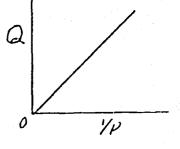

- A car is slowed by a braking force so that it comes to rest in 10 sec. 27. the car travels at the same speed and the braking force is doubled,
 - A. The acceleration will be four times the previous value.
 - The change in velocity will be doubled.
 - The car will come to rest in 5 seconds.
 - The car will come to rest in 20 seconds.
 - The car will come to rest in half the distance.
- 28. A low-friction cart is filled with sand and a constant force is applied. As the cart moves, the sand falls out through a hole in the bottom of the cart. Which graph most nearly describes the motion of the cart?



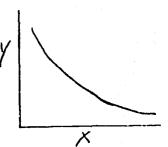
Questions 29 - 32 refer to the graph at the right. In each of several trials, a cart was pulled with a different number of equally-stretched, identical (μL) rubber bands. A constant acceleration was observed in each trial.

- There was a deviation from Newton's laws.
- There was another force acting in the direction of motion.
- There was another force acting opposite the direction of motion.
- None of the above.
- From the graph and your knowledge of the system, predict the acceleration of the cart when a force of one band is applied.
 - 2 m/sec/sec
 - B. -2 m/sec/sec
 - C. 1 m/sec/sec
 - D. -1 m/sec/sec
 - 0 m/sec/sec
- If we change the surface on which the cart is pulled which of the following characteristics of the graph will probably change?
 - slope and F-intercept
 - B . F-intercept only
 - C. slope
 - Neither the slope nor the F-intercept will change
 - none of the above
- From the graph and your knowledge of the system, determine the number 32. of bands of frictional force in the system.
 - Λ.
 - 1 B .
 - C. 2
 - D.
 - Ε. impossible to determine from the information given

33. The equation of the line for the graph at the right is



D.
$$Q = KVP$$


$$B \cdot Q = KT$$

E.
$$Q = KP^2$$

.c.
$$Q = \frac{K}{p^2}$$

- 34. For the graph shown on the right, indicate the action you would take in order to work toward finding the relationship.
 - A. take inverse of x variable and graph Y vs. 1/X
 - B. take square root of x variable and graph Y vs. \sqrt{X}
 - C. no additional graph needed
 - D. square the x variable and graph y vs. x^2
 - E. take square root of y variable and graph \sqrt{Y} vs. X

- 35. A 2000 kg car is traveling at 50 m/sec when the brakes are applied. If the car stops in 10 sec. the average force applied to stop the car is
 - A. 8000 newtons
- D. 800,000 newtons
- B. 300 newtons
- E. none of the above

- C. 5 newtons
- 36. A man pushes a puck on a frictionless horizontal surface with a force of 10 newtons. The resulting acceleration is 4.0 m/sec². What is the mass of the puck?
 - A. 0.4 kg
 - B. 2.5 kg
 - C. 4.0 kg
 - D. 10 kg
 - E. 40 kg
- 37. Car A has a mass pf 500 kg; car B has a mass of 1500 kg. If both cars are given the same acceleration what is the ratio of the force applied to car A over the force applied to car B?
 - A. 3
- D. .67
- B. 1
- E. 0
- c. .33
- 38. A plane having a mass of 10,000 kg is launched from a catapult in 2.0 sec by a force of 300,000 newtons. Its average acceleration during launch was
 - Λ . 30 cm/sec²
 - B. $1/30 \text{ m/sec}^2$
 - C. 300 m/sec^2
 - D. $1/300 \text{ m/sec}^2$
 - E. 30 m/sec^2

- A car has a maximum acceleration of 5 m/sec^2 . If it tows a second car having the same mass and design, the maximum acceleration will be Λ . 0 m/sec²

 - 2.5 m/sec^2 В.
 - 5 m/sec²
 - 7.5 m/sec²
 10 m/sec²
 - Ε.
- A player kicks a .5 kg ball so that it acquires a speed of 10 m/sec in 40. .2 sec. What was the average force applied to the ball during the kick?
 - A. 4 newtons
 - 2.5 newtons
 - c. 25 newtons
 - 100 newtons D.
 - Ε. 10 newtons

FORCE & MOTION

Attitude Survey

DIRECTIONS: This is not a test of information; therefore, there is no one "right" answer to a question. We are interested in your opinion on each of the questions in this survey. Your opinions will be held strictly confidential. Do not hesitate to state exactly how you feel about each item. We are seeking information for an evaluation of the Force and Motion unit; please be "frank", and thank you for your help.

Please respond to each statement in the survey by marking your answer sheet according to the following code:

- 1. Strongly disagree
- 2. Disagree
- 3. Uncertain
- 4. Agree
- 5. Strongly agree

When you write on the answer sheet, be sure to use only an ordinary #2 pencil. No ink or ball point pens may be used.

Turn the answer sheet so that the blue striped area is on your right. In the upper left corner, write in the name of the school. On the line labelled CITY write in the date.

In the upper right corner you will see a group of columns labelled "Print your name in the boxes provided...". Print your last name, your first name, and your middle initial in the boxes provided. If there are extra boxes leave them blank. Go down the columns under each of the boxes in which you have entered a letter and blacken the space that contains the letter.

RESPONSES: 1. STRONGLY DISAGREE

- 2. DISAGREE
- 3. UNCERTAIN
- 4. AGREE
- 5. STRONGLY AGREE
- 1. I felt I could work at my own pace in the Force & Motion unit.
- 2. The unit made learning too mechanical.
- 3. I found it difficult to concentrate on the unit because of the method of presentation.
- 4. The method of presentation of the unit made me feel tense.
- 5. While working in the unit, I felt isolated.
- 6. Responses to my answers were helpful and appropriate.
- 7. The Force & Motion unit was an efficient use of a student's time.
- 8. I could have learned more if I hadn't felt pushed.
- 9. Even interesting material will be boring, if it is presented as the Force & Motion unit was.
- 10. I am not in favor of this kind of instruction because it depersonalizes education.
- 11. After studying the Force & Motion unit, I was interested in finding out more about the subject matter.
- 12. The method of instruction was too inflexible.
- 13. While working in the unit I felt as if someone were engaged in conversation with me.
- 14. The Force & Motion unit made it possible for me to learn quickly.
- 15. I was not concerned when I missed a question because no one was watching me.
- 16. While working in the unit I felt as if I had a private tutor.
- 17. The Force & Motion unit made allowances for students with different levels of understanding.
- 18. I enjoyed the method of instruction used in the unit.
- 19. The Force & Motion method of instruction denied me the opportunity for self expression.
- 20. I prefer lectures and demonstrations to the method of instruction used in the unit.

- 21. The Force & Motion unit helped me in understanding the role of computers.
- 22. The flexibility of scheduling the unit caused me to be too casual about getting on the computer system, and 1 let things go for too long before I tried to run the programs.
- 23. During the unit I was more involved in running the computer than in understanding the material.
- 24. While using the Force & Motion unit, I encountered serious mechanical malfunctions in the computer system.

RESPONSES:

- 1. STRONGLY DISAGREE
- 2. DISAGREE
- 3. UNCERTAIN
- 4. AGREE
- STRONGLY AGREE

FORCE & MOTION

TEACHER REPORT

Name:	School:	Group:
Beginning date of unit (Pretes	t):	Ending date of unit (1st Posttest):
# of class periods in unit:		Length of class period:
Approximate homework time per	class perio	d/student:
Date of 2nd Posttest:		
Texts used by physics classes	in the stud	y:
What portion of a typical week	would you	normally devote to student experimentation?
		(Ex. 40 min/week)
the material?	ental unit	take the place of your usual coverage of
How would you rate your teachi	ng facility	(equipment, supplies, room size)?
Ex. Good Fair How many years have you taught How many semester hours of cou	physics?	eve you had in the Physical Sciences?
0-10 10-20 20-30	30 or	more
Did the work with the experime	ntal unit m	nake excessive demands upon your time?
What other area of science tea		ou think would benefit most from the

ERICase use the reverse side to state other observations and evaluative comments.

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

EVALUATION OF CLASSROOM USE

technical report 1

Students learned the concepts using the two simulation modes described in this Report, and they participated in one of the following three instructional groups:

Group I (Experimental). These students interacted only with the film loops developed in the study and with computer interactive dialogs in which the computer played the role of the student's lab partner. The dialogs simulated physical experiments in force and motion, graphed the unique data collected by individual students, and provided feedback to each student relative to his generalizations.

Group II (Experimental). These students did not have access to computer terminals and interacted with the film loops and with simulated data and problem sheets and their teachers. The simulated data and problem sheets were prepared from the computer lessons after the computer lessons had undergone initial revision.

Group III (Control). These students studied the same concepts as did students in the experimental groups interacting with their teachers and with real laboratory materials as a normal part of their physics course. (The particular units were built largely around laboratory exercises III-1 and III-2 and supporting text materials of the Physical Science Study Committee.)

METHOD

Subjects

Subjects in the study were physics students in five public high schools in Massachusetts and Connecticut. These students were in classes which met the following criteria:

- The Physics teacher was regarded as highly competent by colleagues in science education;
- The teacher was interested in having his classes participate in the study and was able to coordinate necessary arrangements;
- Group I classes were in schools having access to the computer system which was to be used in the study;
- 4. Group III classes used PSSC laboratory materials with teachers who had used the particular materials in previous years and who regarded the particular PSSC laboratory exercises as very important and effective learning modules;
- 5. The student groups had similar academic and socio-economic environments.

Procedure

Students participating in the study were selected from physics classes which were as similar as possible. All students within a particular class were members of the same group and were not aware of the activities of any of the other experimental or control groups.

Teachers in all groups brought their students through specified preliminary activities and then administered Pretests Just prior to having their students begin the experimental unit. Immediately upon concluding unit activities, Posttests were administered to all students. The experimental unit was conducted in all classes within the first three months of the school year (September - December 1970), and activities during this period were carefully controlled and recorded. Following the first Posttest (Posttest #1) the classes participating in the study proceeded independently through various materials which were not experimentally controlled or recorded by the researcher.

In June of 1971, a second Posttest (Posttest #2) was administered to all students participating in the study. This second Posttest was identical to the one which had been taken by the students at the conclusion of the experimental unit. It was used to assess retention in the various experimental and control groups when scores were contrasted with those on the first Posttest. The Student Attitude Survey was also administered at this time to students in Groups I and II to assess their attitudes toward the experimental unit in the context of the entire physics course.

RESULTS

1. Which of the three instructional treatments produced best student performance?

Before the instructional groups were compared with each other, a <u>t</u> test was used to study the change in conceptual understanding from Pretest to Posttest #1 for each instructional group. Test data for each of the three instructional groups displayed in Table I indicated that student knowledge of physical concepts as measured by the tests was significantly higher at the conclusion of the unit than it was at the beginning.

To obtain a gross comparison of the effects of the instructional treatments, an analysis of variance (ANOVA) was conducted on the Pretest-Posttest #1 difference scores for the three groups. The analysis showed (Table II-A) that there were significant differences between the instructional groups; students in Group I had made the greatest gains followed by students in Groups II and III in that order.

TABLE I

PRETEST - POSTTEST #1 COMPARISON
WITHIN EACH INSTRUCTIONAL GROUP

	Grou Pre	p <u>I</u> Post #1	Group Pre	o II Post #1		p <u> </u>
H	30	39	23	314	36.	37
Q_3	19	28	17.5	26	22.5	26
Md	17	25	15	22	18	23
Q_{1}	13.5	22	13	18	15.5	20
L	9	12	5	10	10	14
x	17.21	25.21	15.72	21.68	19.21	23.75
SD	4.49	5.37	3.85	5.01	5.27	5.05
N	57	57	57	57	57	57
t	13.27		11.95		9.45	
t.	01 (56 dr)	= 2.67	t.00	oi (26gt) :	= 3.48	

TABLE II-A

ANOVA OF PRETEST - POSTTEST #1 DIFFERENCE SCORES
BY THE THREE INSTRUCTIONAL GROUPS

Source of Variation	df	Sum of Squares	Mean Square	F
Between groups	2	344.88	172.44	1 0. 82
Within groups	1.68	2677.86	15.94	
Total	170	3022.74		

$$F_{.01}$$
 (2df,168df) = 4.73 $F_{.001}$ (2df,168df) = 7.2

In order to further isolate the effects of instructional treatment upon concept learning, Tables II-B, C, and D display secondary analyses of variance comparing pairs of instructional treatment groups. Although secondary analyses must be interpreted with special care since a more rigorous basis than usual is required for rejection of the null hypothesis, these secondary analyses do show that differences between all pairs of groups were significant.

TABLE II-B

ANOVA OF PRETEST - POSTTEST #1 DIFFERENCE SCORES
BY GROUPS I AND III

Source of		Sum of	Mean	
Variation	df	Squares	Square	F
Between groups	1	340.43	340.43	20.09
Within groups	112	1898.14	16.95	
Total	113	2238.57	4	

TABLE II-C

ANOVA OF PRETEST - POSTTEST #1 DIFFERENCE SCORES
BY GROUPS I AND II

Source of Variation	df	Sum of Squares	Mean Square	F _
Between groups	1	122.14	122.14	7.05
Within groups	112	1939.72	17.32	
Total	113	2061.86		<u></u>

$$F_{.01}$$
 (1df,112df) = 6.87 $F_{.001}$ (1df,112df) = 11.4

TABLE II-D

ANOVA OF PRETEST - POSTTEST #1 DIFFERENCE SCORES
BY GROUPS II AND III

Source of	df	Sum of	Mean	to.
Variation	01	Squares	Square	<u> </u>
Between groups	1	54.75	54.75	14.014
Within groups	112	1517.86	13.55	
Total	113	1572.61		

2. Which of the three instructional treatments produced greatest efficiency of learning (gain in achievement per unit time)?

Table III displays a list of the mean time which students in the three instructional groups spent in unit activities, exclusive of time used for testing. Students in Group I spent a minimum of one hour and forty minutes at the computer terminals. No homework was done as part of the unit by students in this group. Group II classes spent six forty-minute periods on unit activities in class and approximately forty-five minutes were spent by each student in activities which were completed outside of class. Group III classes spent between nine and eleven fifty-minute periods in the unit and completed approximately twenty to thirty minutes of homework outside of class for each of these periods. In other words, Group III students spent approximately two full weeks in physics class on unit activities exclusive of test time.

TABLE III
TIME IN INSTRUCTIONAL ACTIVITIES

Group	Mean Time in Unit (minutes)	Group time + Group I time	Group time + Group III time
I	90	1.0	0.12
II	285	3.2	0.38
111	745	8.3	1.0

The two columns at the right side of Table III compare mean completion time for each instructional group with the mean completion time for Group I and Group III respectively. For example, on the average, Group III students worked in unit activities 8.3 times as long as students in Group I. Had concept learning been equivalent in all groups, then Groups I and II would have been 8.3 and 3.2 times more efficient respectively than Group III (control). However, concept learning was not equivalent. Information has already been presented indicating that Group I students achieved significantly higher gains during the instructional unit than did students in Group III. This means that the efficiency of learning in Group I was substantially greater than 8.3 to 1 when compared with learning in Group III. (Group II students fell between those in Groups I and III in both achievement and in time spent in instructional activities.)

3. What were the effects of the three instructional treatments upon retention?

The mean scores on Posttests #1 and #2 and the respective standard deviations for each instructional group are displayed in Table IV. It should be noted that Table IV includes only the scores of those students presented in Table I who also took Posttest #2. (Since Posttest #2 was administered late in the school year, some students in the study were not available to take that test.)

TABLE IV

POSTTEST #1 - POSTTEST #2 COMPARISON WITHIN EACH INSTRUCTIONAL GROUP

Group	Test	Number of Students	Standard Deviation	Mean Test Score	t
I	Post #1 Post #2	51 51	5.27 5.46	25.29 24.49	1.58
II	Post #1 Post #2	41 41	4.98 4.62	22.42 20.20	14.149
III	Post #1 Post #2	54 54	5.06 5.75	23.57 23.89	0.65

 $t_{.05}$ (40-60df) = 2.0

After analyzing the data using a Related <u>t</u> test for paired variables, Table IV shows that the null hypothesis was <u>not</u> rejected for Group I and Group III, i.e., a significant loss in knowledge during the six month period after the unit was not measured by the tests administered to these groups. Table IV shows that there was a significant drop in score from Posttest #1 to Posttest #2 for the students in Group II.

Table V displays a review of Pretest and Posttest #2 scores. The table shows that the null hypothesis was rejected for each of the three instructional groups. Thus, the gains in concept learning made by all instructional groups were still significant six months after completion of the unit.

TABLE V

PRETEST - POSTTEST #2 COMPARISON
WITHIN EACH INSTRUCTIONAL GROUP

Group	Test	Number of Students	Standard Deviation	Mean Test Score	t
1	Pre Post #2	51 51	4.24 5.46	17.41 2h.49	12.55
[[Pre Post #2	14.1 14.1	3.55 4.62	16.02 20.20	9.48
III	Pre Post #2	54 54	5.08 5.75	18.87 23.89	9.48

 $t_{.001}$ (40-60dr) = 3.5

h. How did the input variables of initial student intelligence, aptitude, grade level, and sex affect achievement?

To assess the effects of learner characteristics upon concept learning under the three instructional treatments, two way analyses of variance were run with Pretest - Posttest #1 difference scores for individual students as the dependent variable.

Table VI summarizes the results of the analyses for six independent variables representing learner characteristics.

TABLE VI

TWO-WAY ANOVA OF PRETEST - POSTTEST #1 DIFFERENCE SCORES
BY VARIABLE AND INSTRUCTIONAL GROUP -- SUMMARY

VARIABLE	1 - 111	Groups Compared I - II	11 - 111
IQ .	0	o .	9
VPSAT	0	0	0
VPSAT interaction with instructional method	0	c .	c
MPSAT	0	. 0	0
Pretest	ъ	0	ь
Grade	0	0	· 0
Sex	c	С	n

 $b = H_0$ rejected at .01 level.

The table shows that IQ, VPSAT, MPSAT, and Grade did not significantly affect the concept learning which occurred during the instructional unit as measured by the evaluation instruments used in the study. Between Groups I and II and Groups II and III some interaction was observed between verbal aptitude and instructional method. Group II students having high verbal scores had substantially greater difference scores from Pretest to Posttest #1 than did students with lower verbal aptitude, and this phenomenon was not apparent in Group I or in Group III. From this data we might infer that rending ability was a greater factor contributing to achievement in Group II than in the other two instructional groups. It should be noted,

c = ii₀ rejected at .05 level.

 $^{0 =} H_0$ not rejected.

however, that the Group II high verbal cell size was considerably smaller than the corresponding cells in the other two groups.

Table VI indicates that Pretest score did significantly affect concept learning when Group I was compared with Group III and when Group II was compared with Group III. With the exception of an inversion in Group III, mean Pretest-Posttest #1 difference scores were greater when mean Pretest scores were lower in all instructional groups. Concept learning means from Pretest to Posttest #1 were lower for the girls than for the boys in all instructional groups. Table VI indicates that secondary analyses of variance showed that Sex did significantly affect concept learning when Group I was compared with Group III and when Group I was compared with Group III.

5. What effect did the unit have upon student attitude in the two instructional treatment groups using simulated materials?

A mean attitude score was developed for each student from responses on the Attitude Survey which was administered to students in Groups I and II six months after the conclusion of the instructional unit, and correlations between these scores and other variables were investigated. The grand mean scores on the survey for both groups indicated generally favorable attitudes toward the mode of instruction; the Group I mean was slightly higher than the Group II mean. A review of individual item means for each group is presented in Table VII. A score of five represents maximum favorable attitude, a score of one represents maximum negative attitude, and a score of three represents a neutral attitude toward the instructional unit. Responses should be

TABLE VII

INSTRUCTIONAL GROUP ATTITUDE PROFILES

Item and Description	Item and Description		
Scale Values 2 5 4	Scale Values		
1. Work at own pace	13. Conversa- tional		
2Not too mech- anical	14. Learn quickly ————————————————————————————————————		
3Easy to work ————————————————————————————————————	15Cared 16. Private tutor		
5Didn't feel X O +	17. Personal attention———————————————————————————————————		
6. Responses helpful — Wo	19Self- expression-+		
use of time ************************************	20. Prefer format		
frustrating — — — — — — — — — — — — — — — — — — —			
0Did not de- personalize	Grand Mean		
1. Wanted to learn more ————————————————————————————————————	- Reversed Scales		
2Method was flexible	X Group I mean O Group II mean		

carefully scrutinized individually, but a review indicates, among other things, that students liked the instructional units (Group I higher than Group II) and that they felt the units were easy to use. Also, it is interesting to note that students in Group II perceived the unit as making more efficient use of their time than did students in Group I. Yet, cognitive data in the study showed the reverse to be true.

CONCLUSIONS

Analysis of data in this study showed that student learning of fundamental concepts in force and motion was significant in the two experimental groups and in the control group. It also showed that learning was significantly greater for students studying the concepts through computer simulation dialogs than for students in the second experimental group and in the control group. Furthermore, control students spent 8.3 times as long in instructional unit activities.

Students in the control group spent 3.2 times as long in instructional activities as did students in a second simulation group which did not have access to the computer dialogs. The achievement of this second group was significantly greater than that of the control group. This simulation group, however, had conceptual losses not experienced by the control group as measured on a second posttest administered six months after the completion of the instructional unit. (Students using the computer simulation dialogs showed no significant losses in conceptual understanding as measured on the second posttest.)

Student attitudes toward both simulated units were favorable.

The data indicated that in spite of limitations, the computer does have extensive potential for individualizing instruction. The design of the instructional materials produced in this study may well provide a model for the design of other simulated experiments which will be effective supplements to science curricula.

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

PROGRAM AND FILE LISTINGS

technical report 1


```
list
FORCEA
    PRINT ""
10
20
    FILES LUNFI
    DIM AS(64),N(14,10)
30
40
    MAT N=ZER
ċΟ
    L = 0
    PRINT "WELCOME TO OUR SIMULATED PHYSICS LAB. THROUGH THIS SERIES OF"
60
    PRINT "PROGRAMS AND FILM LOOPS WE WILL INVESTIGATE HOW"
70
    PRINT FORCE AFFECTS THE MOTION OF AN OBJECT.
80
    PRINT "HAVE YOU WATCHED THE FILM LOOP FORCE & MOTION 1?"
90
     PRINT
100
     PRINT "USE ONLY NUMERALS AND CAPS FOR ANSWERS"
110
120
     PRINT
     INPUT AS
130
140
     7 = 1
     GOSUB 1350
150
     READ #1,1
160
170
     FOR I=1 TO 13
    READ #1;AS
180.
     PRINT AS
: 90
200
     NEXT I
     PRINT "IF A ROCK IS TRAVELLING THROUGH SPACE AT 100 M/SEC AND THERE ARE NO"
510
     PRINT "FORCES ACTING ON IT, WHAT WILL BE ITS SPEED (IN M/SEC) 5 SEC. LATER?"
220
     INPUT D
230
     IF D#100 THEN 1520
240
     READ #1,14
250
     FOR I=1 TO 9
260
270
     READ #11A5
280
     PRINT AS
290
     NEXT I
     PRINT TYPE BELOW THE AMOUNT OF STRETCH IN CM WHICH YOU INTEND TO APPLY DURING
300
     PRINT THE RUNS THROUGHOUT THIS EXPERIMENT.
310
320
     INPUT B
     IF B<50 THEN 2570
330
     IF B>100 THEN 2600
340
350
            YOU MAKE THE SIMULATED RUN WITH THE CART APPLYING A FORCE OF "15;"CM,"
     PRINT "THEN I'LL ANALYZE THE TICKER TAPE, MAKE A DATA TABLE, AND PLOT A GRAPH"
360
     PRINT "OF VELOCITY VERSUS TIME."
370
380
     PRINT THOW MANY BRICKS SHALL WE PLACE ON THE CART FOR A LOAD IN THIS RUN?"
     INPUT C
390
400
     IF C<1 THEN 2470
     IF C>9 THEN 2530
410
     IF C=INT(C) THEN 450
420
430
     PRINT "WE DON'T HAVE PARTIAL BRICKS IN OUR LAB. TYPE IN A WHOLE NUMBER!"
     GOTO 390
440
     GOSUB 1030
450
     PRINT "WHAT KIND OF RELATIONSHIP EXISTS BETWEEN VELOCITY AND TIME UNDER THESE"
460
     PRINT "CONDITIONS (DIRECT OR INVERSE)?"
470
     INPUT AS
480
     IF AS. DIRECT! THEN 2370
490
500
     READ #1,23
510
     FOR I=1 TO 11
520
     READ #1;A;
530
     PRINT AS
540 NEXT I
```



```
550
     PRINT "FROM THE GRAPH WE CAN SEE THAT THE CONSTANT FORCE GAVE OUR"
     PRINT "CART WHAT KIND OF ACCELERATION?"
560
570
     INPUT AS
580
     PRINT
     IF AS CONSTANT" THEN 1700
590
600
     LET Lan
610
     COSUB 1260
     PRINT "BUT IS THE ACCELERATION ALWAYS CONSTANT UNDER THE INFLUENCE OF A"
620
     PRINT "CONSTANT FORCE?"
630
     PRINT "HOW WOULD THE DATA DIFFER IF WE HAD USED A DIFFERENT LOAD?"
640
     PRINT "TO FIND OUT, LET'S CHANGE THE NUMBER OF ERICKS ON THE CART AND MAKE"
650
     PRINT "ANOTHER RUN APPLYING THE SAME FORCE OF"; 6; " CM.
660
     PRINT "HOW MANY BRICKS SHALL WE PLACE ON THE CART FOR A LOAD IN THIS RUN?"
670
680
     LET I=2
690
     INFUT D
700
     IF D<1 THEN 2470
710
     IF D>9 THEN 2530
720
     IF D=C THEN 2130
730
     IF DaINT(D) THEN 760
740
     PRINT "WE DON'T HAVE PARTIAL BRICKS IN OUR LAB. TYPE IN A WHOLE NUMBER!"
750
     GOTO 690
760
     LET C=D
770
     MAT N=ZER
780
     GOSUB 1030
     GOSUB 1260
790
     PRINT "AS YOU CAN SEE OUR DATA ALSO INDICATE THAT THE MASS OF THE CART DID"
800
     PRINT "AFFECT THE ACCELERATION."
610
     PRINT "WAS THE ACCELERATION GREATER OR SMALLER WHEN THE SMALLER MASS WAS"
820
     PRINT "ACCELERATED?"
830
840
     INPUT AS
     IF Asa "GREATER" THEN 1950
350
     READ #1,34
860
     FOR 1=1 TO 9
870
880 READ #1;A5
900
    NEXT I
910
    LET L=0
     PRINT "IF AN AIRPLANE'S ENGINES PRODUCE A NET FORCE WHICH IS CONSTANT AND WHICH
350
     PRINT "ACCELERATES THE PLANE FROM 0 TO 100 M/SEC IN 20 SEC, WHAT WILL BE THE"
930
     PRINT "PLANE'S VELOCITY IN MASEC AT THE END OF 40 SEC?"
941
950
     IMPUT D
960
    1F D#200 THEN 2020
970
     PRINT "RIGHT! AGAIN, A CONSTANT FORCE CAUSES A MASS TO HAVE A CONSTANT"
     PRINT "ACCELERATION."
980
     PRINT "BUT HOW WOULD THE ACCELERATION HAVE DIFFERED HAD WE APPLIED A DIFFERENT"
990
1000
     PRINT "FORCE? -- THIS QUESTION WILL FORM THE BASIS FOR THE NEXT"
      PRINT "EXPERIMENT IN THIS SERIES."
1010
      GOTO 2640
1020
      PRINT "1'VE GOT THE BUZZER ON; --- AND THERE YOU GO PUSHING THE CART DOWN THE"
1030
      PRINT "HALL FLEET-FOOTED AS A DEERL! 77"
1040
      LET A=4*B/((C+1)*5)
1550
      LET A=INT(10 *A)/10
1300
      PRINT THERE IS A DATA TABLE I'VE MADE FROM THE TICKER TAPE PULLED BY THE
1070
      PRINT "CART IN THIS RUN:
1050
1090
      PRINT
1100
      PRINT TIME (SEC) VELOCITY (CM/SEC) [LOAD "";C;" BRICKS FORCE =";B;" CM]"
1110
      FOR To.1 TO 1 STEP .1
```



```
PRINT TAB(3);T;TAB(16);A*T
1130
     LET V=A=T+1
      IF V<13.5 THEN 1160
1140
1150
      LET V=14
1160
      LET NCV, T*10 J=1
1170
      NEXT T
      PRINT
1180
1190
      PRINT "HERE IS A GRAPH OF THE DATA:"
      COSUB 2160
1500
1210
      PRINT "STUDY THE DATA AND GRAPH. CAN YOU OBSERVE ANY REGULARITIES?"
1230
      INPUT AL
      2.2
1230
1240
      GOSUB 1350
1250
      RETURN
      PRINT THE CONSTANT FORCE WE APPLIED IN THIS RUN DID PRODUCE A CONSTANT
1260
      PRINT "ACCELERATION."
1270
1280
      PRINT "ANALYZE THE GRAPH AND DETERMINE THE ACCELERATION IN CM/SEC/SEC."
      HIPUT D
1290
1300
      IF (D >= A+.5) OR (D <= A-.5) THEN 1790
      PRINT TOK. OUR CONSTANT FORCE OF "; B; "CM CAUSED OUR CART TO HAVE A CONSTANT"
1310
      PRINT "ACCELERATION OF"; A; CM/SEC/SEC."
1320
      PRINT
1330
1340
      RETURN
      IF A5="YES" THEN 1410
IF A5="yes" THEN 1410
IF A5="no" THEN 1470
IF A5="NO" THEN 1470
1350
1350
1370
1380
      PRINT "PLEASE TYPE YES OR NO"
1390
1400
      CUTO Z OF 90,1210
      COTO Z OF 160,1250
1410
      PRINT "CALL PROCTOR - ERROR IN LINE 1296"
1420
1430
      GOTO 2690
      RETURN
1440
      PRINT "PLEASE TYPE IN 'YES' OR 'NO'; I'LL ASK THE QUESTION AGAIN."
1450
1460
      GOTO 90
1470
      IF Z=2 THEN 1670
      PRINT TO MAKE THE SIMULATION AS REALISTIC AS POSSIBLE YOU SHOULD VIEW FILM
1460
      PRINT "LOOP FORCE & MOTION I PRIOR TO PROCEEDING. THE FILM WILL HELP YOU"
1490
      PRINT "UNDERSTAND THE NATURE OF THE APPARATUS WE WILL USE.
1500
1510
      GUTO 2690
      IF D≠0 THEN 1550
1520
      PRINT "BE CAREFUL TO TYPE NUMBERS - TRY AGAIN"
1530
1540
      GOTO 230
1550
      LET LUL+1
1550
      IF L-2 THEN 1630
     READ #1,43
1570
1580
      FOR I=1 TO. 6
      READ #1:AS
1590
1600
     PRINT AS
1610
     UEXT I
1620
     COTO 210
1630
     TRINT "NO; APPARENTLY YOU NEED TO REVIEW THE PROPERTY OF INERTIA (NEWTON'S 1ST"
      PRINT "LAV) BEFORE CONTINUING. CONSULT YOUR TEACHER OR YOUR TEXT AS SOON AS
1640
1650
     PRINT "POSSIBLE."
1660
      COTO 2690
      PRINT "LOOK AT THE GRAPH AGAIN. THE PLOTTED POINTS SHOW THAT AS TIME INCREASED"
1670
```

```
PRINT "THE VELOCITY INCREASED IN A RATHER SIMPLE MANNER."
1680
       GOTO 1250
1690
       IF As "constant" THEN 600
1700
       IF A5="UNIFORM" THEN 600
1710
       IF As="uniform" THEN 600
1720
1730
       READ #1,49
1740
      FOR I=1 TO 8
1750
       READ #1:A5
       PRINT AS
1760
1770
       NEXT I
1750
       GOTO 550
1790
       LET LuL+1
       IF L >= 3 THEN 1920
1300
       IF L=2 THEN 1860
1310
1820
       PRINT "SGRRY, YOUR CALCULATION IS INCORRECT. I'LL GIVE YOU ANOTHER CHANCE."
       PRINT TREMEMBER ACCELERATION IS THE SLOPE OF THE VELOCITY V.TIME GRAPH;
1630
       PRINT "SLOPE = RISE/RUN = CHANGE IN V/CHANGE IN T."
1840
1850
       GOTO 1280
       PRINT "YOU'RE NOT MEASURING THE SLOPE PROPERLY. STUDY THE GRAPH AND CALCULATE"
1350
       PRINT "A AGAIN. IT SHOULD EQUAL":A; "CM/SEC/SEC. TYPE 'GO' IF YOU SEE HOW TO GE
1870
       PRINT "THIS AND YOU WANT TO RETURN TO THE EXPERIMENT, OTHERWISE TYPE 'HELP'.
1850
1890
       INPUT AS
       IF A5="GO" THEN 1340
IF A5="go" THEN 1340
1900
1910
      PRINT TYOU N. PRINT TLINE.
              'YOU NEED ASSISTANCE IN MEASURING THE SLOPE OF A STRAIGHT"
1920
                      SEE YOUR TEACHER FOR HELP BEFORE RETURNING TO THIS PROGRAM.
1930
1940
       COTO 2690
       IF A5="LARGER" THEN 860 IF A5="greater" THEN 860
1950
1900
       IF Asa larger THEN 860
1970
       PRINT IND. LOOK AT YOUR GRAPHS AGAIN. THE ACCELERATIONS ARE REPRESENTED BY THE PRINT ISLOPES OF THE VELOCITY V. TIME GRAPHS. THE LARGER MASS HAS THE SHALLER
1980
1990
             "SLOPES OF THE VELOCITY V. TIME GRAPHS. THE LARGER MASS HAS THE SMALLER"
2000
       PRINT "ACCELERATION! LET'S TRY THE QUESTION AGAIN."
       GOTO 820
2010
2020
       IF L >= 2 THEN 2100
2030
       LET L=L+1
2040
       PRINT TWO. SINCE A CONSTANT NET FORCE IS PRESENT THE PLANE WILL UNDERGO AT
2059
       PRINT "CONSTAUT ACCELERATION. THE SAME CHANGE IN VELOCITY WILL OCCUR IN EACH"
2060
       PRINT TIME INTERVAL. FROM THE DATA IN THE PROBLEM WE CAN SEE THAT THE PLANE'S
      PRINT "VELOCITY INCREASES BY '5M/SEC EACH SEC. WHILE THE NET FORCE IS PRESENT."
2070
2060
       PRINT "LET'S TRY THE QUESTION AGAIN."
2090
       G010 920
       PRINT "NO. THE CORRECT ANSWER IS 200M/SEC. IF YOU DON'T UNDERSTAND WHY DISCUSS
2100
       PRINT THIS WITH YOUR TEACHER AS SOON AS POSSIBLE.
2110
2120
       GOTO 990
       PRINT "NO: DON'T USE";D; BRICKS AGAIN. WE WANT TO MAKE A RUN WITH A LOAD
2130
       PRINT "THAT IS DIFFERENT FROM OUR FIRST RUN. SO, AGAIN -- "
2140
2150
       GOTO 670
2160
       PRINT
       FOR Y=12 TO 1 STEP -1
2170
2130
      READ AS
2190
       PRINT AS;
3200
       IF Y/20INT(Y/2) THEN 2220
2210
       PRINT TAB(7);Y;
5550
       FOR X=1 TO 10
2230
       IF NEY+1, X )=1 THEN 2270
```



```
2240
     NEXT X
2250
      PRINT TAB(13); "+"
      GOTO 2280
2260
      PRINT TAB(13); "+"; TAB(13+X*4); "X"
2270
      NEXT Y
2280
2290
      PRINT TAB(8); 0
      PRINT TAB(13); 0 .1 .2 .3 . .4
2300
                                        .5 .6
                                                 .7 .8 .9 1.0
      PRINT TAB(26); TIME (SEC)"
2310
      PRINT "[LOAD =";C;" BRICKS
                                    FORCE - IN CMI
2320
2330
      DATA ",
              "","V", "E","L","O (CM/SEC)","C","I","T","Y","",""
2340
      RESTORE
2350
2360
      RETURN
     IF As="direct" THEN 500
IF As="INVERSE" THEN 2420
IF As="inverse" THEN 2420
2370
23n0
2390
      PRINT "YOUR ANSWER MUST BE 'DIRECT' OR 'INVERSE'. SO, AGAIN--"
2400
2410
     COTO 460
2420
      PRINT "VRONG. WHEN TWO VARIABLES ARE INVERSELY RELATED ONE DECREASES AS THE"
      PRINT TOTHER INCREASES. LOOK AT YOUR GRAPH AGAIN. IT SHOWS THAT THE VELOCITY"
2430
2440
             INCREASED WHILE TIME INCREASED. THIS MEANS THAT THE VARIABLES ARE
      PRINT "DIRECTLY RELATED. SO, AGAIN --
2450
2460
      GOTO 460
2470
      PRINT
             IF YOUR CART HAS LESS THAN I BRICK ON IT AND YOU APPLY THE FORCES
            "AVAILABLE WITH OUR APPARATUS, THE CART VILL TAKE OFF SO FAST YOU WON'T"
2480
2490
             "BE ABLE TO APPLY A CONSTANT FORCE. I SUGGEST A LOAD OF I OR MORE BRICKS!
      PRINT
            "SO, AGAIN--
2500
      IF I=2 THEN 690
2510
      COTO 390
2520
             'I CAN ONLY FIND NINE BRICKS IN THE LABORATORY. BESIDES, THE CART WILL"
2530
      PRINT
     PRINT "BE PRETTY HARD TO HANDLE WITH MORE THAN NINE BRICKS ON IT. SO, AGAIN ... "
2540
      IF I=2 THEN 690
2550
2560
      COTO 390
      PRINT
             THE UNSTRETCHED RUBBER LOOP IS ALMOST 50 CM LONG. WHEN WE STRETCH THE
2570
      PRINT "LOOP LESS THAN 50 CM WE'RE NOT APPLYING A SIGNIFICANT FORCE.SO, AGAIN -- "
2560
2598
      COTO 300
      THIRS
             "WE'RE STRETCHING THE RUBBER BAND WITH A METER STICK WHICH IS"
2600
     PRINT "100CH LONG. YOU CAN'T APPLY A CONSTANT FORCE ACCURATELY WITH"
5610
      PRINT THESE MATERIALS IF THE STRETCH EXCEEDS 100CM. SO, AGAIN ---
2629
2630
      COTO 300
2640
      READ #1,57
      FUR I=1 TO 14
2650
     READ #1;AS
2000
      PRINT AS
2670
     NEXT I
2680
      PRINT "TO SIGN OFF THE TERMINAL, TYPE 'BYE' AND PRESS THE RETURN KEY
2690
2700
```


ONE INSTRUCTION BEFORE WE BEGIN: WHEN YOU'RE ASKED TO TYPE IN NUMERICAL DATA, DO NOT TYPE THE UNITS OF THE ANSWER. EXAMPLE, AN ANSWER OF 10M/SEC SHOULD BE TYPED '10'. EXPERIENCE TELLS US THAT WE MUST APPLY A FORCE TO CAUSE AN OBJECT TO MOVE. IN THIS SERIES OF SIMULATED EXPERIMENTS WE SHALL INVESTIGATE PHYSICAL VARIABLES WHICH AFFECT THE MOTION OF AN OBJECT. THE DATA WHICH WE WILL GENERATE WILL BE VERY SIMILAR TO THAT OBTAINED BY EXPERIMENTERS USING THE REAL APPARATUS SHOWN IN THE FILM LOOP. I WILL BE YOUR LAB 10 PARTNER.

11 BEFORE VE CONTINUE, YOU SHOULD BE FAMILIAR WITH THE PROPERTY OF INERTIA WHICH WAS DESCRIBED BY GALILEO AND 13 NEUTON.

14

CORRECTI DUE TO THE PROPERTY OF INERTIA (SOMETIMES CALLED NEWTON'S IST LAW) AN OBJECT'S VELOCITY WILL BE CONSTANT 16 UNTIL AN UNBALANCED FORCE IS APPLIED. YET, IN WHAT WAY WILL AN UNBALANCED FORCE CAUSE THE VELOCITY TO CHANGE?

IN THIS FIRST EXPERIMENT WE SHALL INVESTIGATE HOW AN 19 OBJECT'S VELOCITY CHANGES WHEN WE APPLY A CONSTANT FORCE. 20 WE SHALL APPLY A CONSTANT FORCE TO THE CART BY KEEPING ONE 21 LOOP OF RUBBER STRETCHED A CONSTANT LENGTH. (WE CAN STRETCH OUR LOOP TO ANY LENGTH BETWEEN 50CM AND 100CM.)

23

RIGHTI IN FACT, THERE APPEARS TO BE A LINEAR RELATIONSHIP 24 BETWEEN VELOCITY AND TIME IF WE OVERLOOK THE SMALL IRREGU-

LARITIES PROBABLY CAUSED BY EXPERIMENTAL ERROR -- SUCH AS

VARIATIONS IN THE FORCE APPLIED. THE CHANGE IN VELOCITY WAS

PROPORTIONAL TO THE TIME INTERVAL DURING WHICH THE FORCE 28

ACTED. WHEN WE APPLIED A CONSTANT FORCE TO THE CART THE

VELOCITY INCREASED AT A CONSTANT RATE.

FROM YOUR STUDY OF MOTION YOU WILL RECALL THAT ACCELERA-

TION IS THE RATE OF CHANGE OF VELOCITY. THE ACCELERATION 35

OF AN OBJECT IS THEN THE SLOPE OF ITS VELOCITY V. TIME

GRAPH. (CHANGE IN V/CHANGE IN T). 34

CORRECT: THE SMALLER MASS UNDERWENT A LARGER ACCELERATION.

APPARENTLY THERE IS SOME KIND OF INVERSE RELATIONSHIP

BETWEEN THE MASS OF AN OBJECT AND ITS ACCELERATION WHEN A 37

CONSTANT FORCE IS APPLIED. WE WILL FURTHER INVESTIGATE THIS

RELATIONSHIP IN THE THIRD EXPERIMENT IN THIS SERIES.

TO SUMMARIZE: WE CAN SEE FROM THE GRAPHS OF OUR DATA THAT

WHEN A CONSTANT FORCE WAS APPLIED TO A CART WITH A PARTI-

CULAR MASS THE ACCELERATION WAS CONSTANT. 42

NOW, LET'S TRY ONE LAST PROBLEM. 43

NO: YOUR ANSWER IS INCORRECT. BY THE PROPERTY OF INERTIA WE

MEAN THAT AN UNBALANCED FORCE IS NECESSARY TO CHANGE THE

VELOCITY OF AN OBJECT. IN THIS PROBLEM WE WERE TOLD THAT NO

FORCES VERE ACTING, AND HENCE, NO CHANGE IN VELOCITY WILL 47

OCCUR. APPARENTLY EVEN FRICTION IS NEGLIGIBLE IN THIS

PROBLEM. I'LL ASK THE QUESTION ONE MORE TIME.

49

INCORRECT. THIS GRAPH OF VELOCITY VS. TIME CAN BE REPRESENTED BY A STRAIGHT LINE. THE SLOPE OF A STRAIGHT LINE IS THE SAME

AT ALL POINTS ON THE LINE. AN OBJECT'S ACCELERATION IS ITS 52

CHANGE IN VELOCITY PER UNIT TIME; IT IS THE SLOPE OF THE 53

VELOCITY V. TIME GRAPH. THEREFORE THE CONSTANT FORCE HAS 54

CAUSED A CONSTANT ACCELERATION. IF YOU HAVE DIFFICULTY 55

UNDERSTANDING THESE IDEAS, DO TALK THEM OVER WITH YOUR 56

TEACHER AS SOON AS POSSIBLE. LET'S TRY THE QUESTION AGAIN--

SINCE YOU HAVE BEEN STUDYING FORCE AND MOTION USING A SIMU-

LATED EXPERIMENT, YOU HAVE NOT HAD TO COPE WITH THE MANY 59

SOURCES OF EXPERIMENTAL EBROR PRESENT IN THE ACTUAL

APPARATUS. IF YOU WERE TO DO THE REAL EXPERIMENT YOU WOULD

HAVE TO REDUCE SUCH ERROR BEFORE THE GENERALIZATIONS WE'VE 62

SEEN COULD BE OBSERVED. PERHAPS YOU WILL BE ABLE TO PURSUE 63

THE INVESTIGATION FURTHER AT HOME OR IN YOUR LAB.

AFTER YOU'VE SIGNED OFF THE TERMINAL ROLL OUT SEVERAL

EXTRA INCHES OF PAPER. ON THIS PAPER LIST THE SOURCES OF

EXPERIMENTAL ERROR AS YOU ENVISION THEM AND STATE THE 67

MAJOR CONCLUSIONS YOU CAN DRAW FROM THE EXPERIMENT.

INCLUDE THIS PAPER IN YOUR PHYSICS NOTEBOOK. AS SOON AS 69

YOU HAVE THE OPPORTUNITY VIEW THE NEXT FILM LOOP 'FORCE &

MOTION II' AND THEN RUN 'FORCEB'.

72

73

74

list FORCEB

- FILES LUNF2 10
- DIM A:(65],N[11,10],O[11,10] 20
- 30
- PRINT "WELCOME AGAIN TO OUR SIMULATED PHYSICS LAB. IN THIS SECOND"
 PRINT "EXPERIMENT OF THE SERIES WE WILL INVESTIGATE HOW FORCES AFFECT"
 PRINT "THE ACCELERATION OF AN OBJECT. HAVE YOU COMPLETED FORCEA &" 44 0
- 50
- PRINT "WATCHED THE FILM LOOP FORCE & MOTION 11'?" 60
- 70 INPUT AS
- 80
- IF AS="YES" THEN 90 IF AS#"yes" THEN 2760 82
- 90 LET L=0
- 95 MAT N=ZER
- 95 MAT OFZER
- PRINT "IN OUR LAST EXPERIMENT WE OBSERVED THAT A CONSTANT FORCE GAVE OUR CART" PRINT "WHAT KIND OF ACCELERATION?" 100
- 110
- 120 INPUT AS
- IF AS="CONSTANT" THEN 150
 IF AS="constant" THEN 150
 IF AS="uniform" THEN 150
 IF AS="Uniform" THEN 2800 130
- 132
- 134
- 140
- PRINT "RIGHT! NOW TO STUDY HOW ACCELERATION VARIES WHEN THE APPLIED FORCE IS" 150
- 160 PRINT "CHANGED WE'LL HOLD ALL OTHER VARIABLES (SUCH AS MASS) CONSTANT."

```
PRINT "HOW MANY BRICKS SHALL WE PLACE ON THE CART THROUGHOUT THIS EXPERIMENT?"
170
     INPUT C
180
190
     IF C<2 THEN 2660
     IF C>10 THEN 2720
200
     LET M=(C+1)*5
210
     LET F=2.5
220
230
     IF C>9 THEN 310
240
     LET F=2
250
     IF C>7 THEN 310
260
     LET F=1.5
270
     IF C>5 THEN 310
280
     LET F=1
290
     IF C>3 THEN 310
300
     LET F=.5
310
     READ #1.1
320
     FOR 1-1 TO 7
330
     READ #11AS
     PRINT AS
340
350
     NEXT I
     FOR L=1 TO 11
360
     PRINT "HOW MANY LOOPS ARE YOU APPLYING IN THIS RUN?"
370
380
     INPUT B
     IF B=INT(B) THEN 420
390
     PRINT "WE DON'T HAVE ANY PARTIAL LOOPS IN OUR LAB. TYPE IN A WHOLE NUMBER."
400
410
     GOTO 380
     IF B<0 THEN 1470
420
     IF B: 10 THEN 1500
430
440
     LET A1=240*(B-F)/M
     LET A1=INT(10*A1+.5)/10
450
460
     LET A2=240#B/M
470
     LET A2=INT(10*A2+.5)/10
     IF A1>0 THEN 500
480
490
     LET AI=0
500
     PRINT "THE ACCELERATION IN THIS RUN WAS: "; AI; " CM/SEC/SEC."
     IF A2 >= 105 THEN 560
510
520
     IF A1 >= 105 THEN 560
     IF B=0 THEN 560
530
540
     LET N(A1/10+1,81=1
550
     LET 0(A2/10+1,B)=1
560
     IF L<5 THEN 620
            IF YOU'D LIKE TO MAKE ANOTHER RUN, TYPE 'RUN'; IF YOU'D LIKE ME
     PRINT '
570
     PRINT TO GRAPH A VS. F, TYPE 'PLOT'."
580
     INPUT AS
590
     IF As="plot" THEN 630
595
     IF AS = "PLOT" THEN 630
600
     IF As="run" THEN 620
605
     IF ASP"RUN" THEN 1540
610
520
     NEXT L
     GOSUB 2180
630
640
     PRINT "CAN YOU OBSERVE ANY REGULARITIES IN THIS GRAPH?"
650
     INPUT AS
     IF AS="yes" THEN 670
655
     IF ASP"YES" THEN 1560
660
```

```
PRINT "WHAT KIND OF RELATIONSHIP EXISTS BETWEEN ACCELERATION AND FORCE "
670
     PRINT "(DIRECT OR INVERSE)?"
680
     INPUT AS
690
     IF As="direct" THEN 710
695
     IF AS O DIRECT THEN 2570
700
710
     READ #1,8
720
     FOR 1=1 TO 6
730
     READ #11AS
746
     PRINT AS
     NEXT I
750
760
     INPUT AS
770
     LET L=0
     PRINT THERE IS FRICTION BETWEEN THE CART AND THE FLOOR WHICH OPPOSES THE
780
     PRINT "FORCE WE APPLY. STUDY THE GRAPH & DETERMINE THE FORCE OF"
790
     PRINT "FRICTION(IN LOOPS)."
800
     INPUT D
810
820
     IF D<(F-.5) THEN 1620
830
     IF D>(F+.5) THEN 1620
840
     READ #1,15
850
     FOR 1=1 TO 5
     READ #1;AS
560
870
     PRINT AS
880
     NEXT I
890
     INPUT AS
     IF AS="left" THEN 1750
895
     IF AS TLEFT THEN 1750
900
     IF AS="right" THEN 920
905
     IF ASP RIGHT THEN 1810
910
     READ #1,20
920
930
     FOR 1=1 TO 4
940
     READ #11AS
     PRINT AS
950
     NEXT I
960
970
     LET L=0
980
     PRINT TYPE IN THE POINT WHERE YOU THINK THE NEW PLOT WILL INTERSECT THE
     PRINT "FORCE AXIS."
990
      INPUT D
1000
      IF D#0 THEN 1830
1010
      PRINT "RIGHT! HERE'S THE NEW GRAPH!"
1020
1030
      MAT N=0
1040
      GOSUB 2180
      PRINT "AGAIN, WE SEE A LINEAR RELATIONSHIP BETWEEN FORCE AND ACCELE-"
1050
      PRINT TRATION. NOTE THAT THOUGH THE INTERCEPT WITH THE FORCE AXIS'
1060
     PRINT THAS BEEN MOVED, THE SLOPE OF THE GRAPH HAS NOT CHANGED.
1070
     PRINT "FRICTIONAL FORCE DOES NOT APPEAR TO AFFECT THE SLOPE OF THE"
1080
      PRINT "ACCEL. VS. FORCE GRAPH.
1090
      LET L=0
1100
      PRINT "WRITE AN EQUATION TO FIT THIS GRAPH. USE "A" TO REPRESENT ACCELERATION"
1110
      PRINT "AND "F" TO REPRESENT FORCE. USE "K" TO REPRESENT THE SLOPE (DON'T'
1120
      PRINT BOTHER TO CALCULATE IT). BEGIN THE EQUATION: A=
1130
      INPUT AS
1140
      IF AS="a=kf" THEN 1160
1145
      IF AS # A=KF" THEN 2400
1150
```



```
PRINT "RIGHT! -- BUT WHAT FACTORS WILL CAUSE THE SLOPE TO CHANGE? WE'VE"
1160
      PRINT "OBSERVED THAT FRICTION HAS NO EFFECT. WHAT OTHER VARIABLE"
1170
      PRINT "MIGHT CAUSE THE SLOPE TO CHANGE?"
1180
      INPUT AS
1190
      IF AS="mess" THEN 1210
IF AS="MASS" THEN 1930
1195
1200
      READ #1,24
1210
1220
      FOR I=1 TO 10
      READ #1;AS
1230
      PRINT AS
1240
1250
      NEXT I
      LET L=0
1260
      PRINT "A SPACESHIP IS ACCELERATING IN SPACE AT 10M/SEC/SEC DUE TO THE FORCE" PRINT "PROVIDED BY ONE ROCKET ENGINE. SUDDENLY 2 MORE IDENTICAL ROCKETS ARE"
1270
1250
      PRINT "IGNITED PROVIDING THRUST IN THE SAME DIRECTION AS THE FIRST. WHAT
1290
      PRINT "ACCELERATION IN M/SEC/SEC DOES THE SHIP NOW EXPERIENCE?"
1300
      INPUT D
1310
1320
      IF D#30 THEN 1950
      PRINT "GOOD! HERE'S ANOTHER PROBLEM FOR YOU TO TRY!"
1330
      PRINT "IN 10 SEC AN OBJECT ACCELERATES FROM REST TO A SPEED OF 300CM/SEC"
1340
             "WHEN ACTED UPON BY A NET FORCE(F). AT THE END OF THE 10SEC"
1350
      PRINT "INTERVAL F BECOMES ONE-THIRD ITS ORIGINAL STRENGTH."
1360
      PRINT "WHAT IS THE SPEED OF THE OBJECT AT THE END OF THE FIRST 20 SEC IN" PRINT "CM/SEC?"
1370
1350
      INPUT D
1390
      IF D#400 THEN 2060
1400
1410
      READ #1,34
1420
      FOR I=1 TO 11
      READ #1;AS
1430
      PRINT AS
1440
      NEXT 1
1450
      COTO 2880
1460
1470
      PRINT "A NEGATIVE NUMBER OF LOOPS?? WE CAN ONLY APPLY POSITIVE"
      PRINT "FORCE WITH OUR APPARATUS. SO, AGAIN --"
1480
      GOTO 370
1490
1500
      PRINT "WITH MORE THAN 10 LOOPS STRETCHED 60CM THE CART MOVES SO FAST"
      PRINT "YOU CAN'T APPLY A CONSTANT FORCE, DON'T USE MORE THAN 10"
1510
      PRINT "LOOPS. SO, AGAIN --
1520
1530
      GOTO 370
      PRINT "YOU DIDN'T TYPE 'PLOT' OR 'RUN'. WHICH DO YOU WANT TO DO?"
1540
1550
      GOTO 590
      PRINT "ARE YOU LOOKING CAREFULLY AT THE DATA?"
1560
      PRINT "NOTICE THAT AS FORCE INCREASES, ACCELERATION"
1570
      PRINT "ALSO INCREASES."
1550
      GOTO 670
1610
      IF L>1 THEN 1690
1620
1630
      LET L=L+1
      PRINT "SORRY, VHONG ANSWER. THE FORCES WE HAVE PLOTTED ARE THE FORCES"
1640
      PRINT "WE APPLIED. FRICTION OPPOSES THE APPLIED FORCE. UNTIL THE"
1650
      PRINT TAPPLIED FORCE EXCEEDS FRICTION THERE WILL BE NO ACCELERATION.
1660
      PRINT "FIND THAT POINT ON YOUR GRAPH. LET'S TRY THE QUESTION AGAIN.
1670
      018 0TOD
1680
      PRINT "NO. THE FRICTIONAL FORCE IS"; F; LOOPS. IT IS REPRESENTED"
1690
```

PRINT TBY THE INTERCEPT OF THE GRAPH WITH THE FORCE AXIS. IF YOUT

1700

•

```
PRINT "DON'T UNDERSTAND DISCUSS THIS WITH YOUR TEACHER AS SOON"
1710
     PRINT
            "AS POSSIBLE. NOW, ANSWER THE QUESTION CORRECTLY. WHAT IS THE FORCE OF
1720
      PRINT "FRICTION SHOWN ON THE GRAPH?"
1730
1740
      GOTO 810
      PRINT
            THINK IT THROUGH AGAIN.
1750
      PRINT "MORE FRICTION, THE MORE FORCE"
1760
      PRINT "REQUIRED TO CHANGE THE INTERCEPT."
1770
      READ #1,17
1771
      FOR I=1 TO 3
1772
1773
      READ #11A5
1774
      PRINT AS
      NEXT I
1775
      GOTO 890
1800
      PRINT TYOUR ANSWER MUST BE 'LEFT' OR 'RIGHT'. SO AGAIN --
1810
      GOTO 890
F820
      IF L>1 THEN 1890
1830
      LET L=L+1
640
      PRINT "NO. PLOTTING THE RESULTANT FORCE IS EQUIVALENT TO SUBTRACTING"
850
      PRINT THE FRICTIONAL FORCE FROM THE APPLIED FORCE. THE GRAPH WILL
1860
      PRINT "REPRESENT A FRICTIONLESS CONDITION. TRY THE QUESTION AGAIN."
1870
      GOTO 980
1860
      PRINT "NO.
                 THE NEW GRAPH SHOULD PASS THROUGH THE ORIGIN. IF YOU DON'T"
1890
      PRINT 'UNDERSTAND WHY, DISCUSS THIS WITH YOUR TEACHER AS SOON AS
1900
      PRINT "POSSIBLE. HERE'S THE NEW GRAPH."
1910
1920
      GOTO 1040
      PRINT "WHAT ABOUT THE MASS OF THE CART?"
1930
      GOTO 1210
1940
      IF L>1 THEN 2010
1950
      LET L=L+1
1960
      PRINT "WRONG. THE APPLIED FORCE INCREASED TO 3 TIMES ITS ORIGINAL"
1970
      PRINT "VALUE. THE ACCELERATION OF THE SPACESHIP IS PROPORTIONAL TO"
1980
      PRINT THE APPLIED FORCE. TRY THE QUESTION AGAIN.
1990
2000
      GOTO 1270
      PRINT "SINCE THE FORCE INCREASED TO 3 TIMES ITS ORIGINAL VALUE, THE"
2010
      PRINT "ACCEL. INCREASED TO 3 TIMES ITS ORIGINAL VALUE, AND 3X10=30."
2020
      PRINT "IF YOU DON'T UNDERSTAND DISCUSS THIS WITH YOUR TEACHER AS SOON"
2030
      PRINT "AS POSSIBLE. NOW, HERE'S ANOTHER PROBLEM."
2040
      GOTO 1348
2050
      IF L>2 THEN 2140
2060
      LET L=L+1
2970
      PRINT "SORRY, WRONG ANSWER, IN THE SECOND TIME INTERVAL THE FORCE"
5040
      PRINT "IS 1/3 ITS ORIGINAL VALUE AND HENCE THE ACCEL. IS 1/3 ITS"
2090
      PRINT "ORIGINAL VALUE, IF THE OBJECT GAINED 300CM/SEC IN THE FIRST"
2100
      PRINT "10 SEC, IT WILL GAIN 1/3 THAT IN THE NEXT 10 SEC. TRY THE"
5110
      PRINT "QUESTION AGAIN."
2121
2130
      GOTO 1370
      PRINT "NO. 1/3 OF 300 IS 100. YOU NEED FURTHER HELP IN UNDERSTANDING"
2140
      PRINT "THIS CONCEPT. CONSULT YOUR TEACHER BEFORE CONTINUING THIS"
2150
      PRINT "PROGRAM."
2150
2170
      GOTO 2880
      PRINT
2180
2190
      FOR Y=10 TO 1 STEP -I
2200 READ AS
```


2210 PRINT ALL

```
IF Y/20INT(Y/2) THEN 2270
  2220
  2230
                 1F Y#10 THEN 2260
                 PRINT TAB(6); "10*Y;
  2240
  2250
                  GOTO 2270
                 PRINT TAB(7);10*Y;
  2260
                 FOR X=1 TO 10
  2270
                 1F N(Y+1,X)=1 THEN 2320
  2280
  2290
                 NEXT X
                 PRINT TAB(13);"+"
  2300
  2310
                  GOTO 2330
                 PRINT TAB(13); "+"; TAB(13+X*4); "X"
  2320
                 NEXT Y
  2330
  2340
                 PRINT TAB(9); 0
                                                                ++++++++++
                 PRINT TAB(13); 0 1 2 3
                                                                                                4 5 6 7 8 9 10"
  2350
                 PRINT TAB(29); FORCE (LOOPS) TOTAL T
  8360
  2370
                 RESTORE
  2380
  2390
                 RETURN
                 IF AS="A=K*F" THEN 1160
  2400
                  IF A5="8=k*f" THEN 1160
  2405
                  IF AS="A=FK" THEN 1160
  2410
                IF A5="a=fk" THEN 1160
IF A5="A=kxf" THEN 1160
IF A5="a=kxf" THEN 1160
  2415
2420
  2425
                 IF AS="A=FXK" THEN 1160
  2430
                 IF AS="aufxk" THEN !160
  2435
  2440 IF AS="A=F*K" THEN 1160
2445 IF AS="a=f*K" THEN 1160
                 IF L>1 THEN 2530
  2450
                 LET L=L+1
  2460
  2470
                 TEAD #1,45
  2480
                 FOR I=1 TO 7
  2490
                 READ #13AS
  2500
                 PRINT AS
                 NEXT !
  2510
  2520
                  GOTO 1110
                 PRINT "NO. THE EQUATION IS: AEKF. IF YOU DON'T UNDERSTAND"
  2530
                 PRINT "WHY DISCUSS THIS WITH YOUR TEACHER AS SOON AS POSSIBLE."
  2540
                 PRINT "NOW, HERE"S THE QUESTION ONCE MORE.
  2550
                 GOTO 1110
  2560
                 IF AS="INVERSE" WHEN 2600
  2570
                 AF AS="inverse" THEN 2600
  2575
                 FRINT "YOUR ANSWER MUST BE 'DIRECT' OR 'INVERSE's SO, AGAIN --"
  2580
                 GOTO 679
  2590
                 READ #1,24
  2600
  2610
                 FOR I=1 TO 4
  2620
                 READ #1;AS
  2630
                 PRINT AS
  2640
                 NEXT 1
  2650
                 GOTO 678
                PRINT "THE EXPERIMENT MUST HAVE AT LEAST 2" PRINT "BRICKS ON THE CART."
  2660
  2670
  2680 PRINT "SO, I'LL NEED ANOTHER NUMBER."
  2710 GOTO 170
```


PRINT "YOU'LL FIND THAT THE CART WILL BE VERY SLOW AND HARD TO HANDLE" 2720 PRINT "WITH MORE THAN 10 BRICKS ON IT. DON'T USE MORE THAN 10 BRICKS." 2730 PRINT "SO, AGAIN --" 2740 2750 GOTO 178 PRINT "THIS PROGRAM IS THE SECOND IN A SERIES. SINCE THE CONCEPTS" PRINT "DEVELOPED ARE SEQUENTIAL YOU SHOULD BEGIN BY VIEWING THE FILM" 2780 PRINT "LOOP FORCE & MOTION I", THEN RUN FORCEA." GOTO 2880 IF LOO THEN 2860 2300 LET L=L+1 2810 PRINT "YOU SHOULD KNOW THE CORRECT ANSWER TO THIS QUESTION IF YOU'VE" 2820 PRINT "BEEN THROUGH 'FORCEA'. I'LL GIVE YOU ONE MORE CHANCE TO" 2830 PRINT "TYPE IT PROPERLY." 2840 2350 GOTO 100 PRINT "RUN "FORCEA" BEFORE CONTINUING." 2860 2870 GOTO 2880 2880 PRINT "TO SIGN OFF THE TERMINAL TYPE 'BYE' AND PRESS THE RETURN KEY"

2890

```
WHAT FILE IS TO BE LISTED? 71unf2 STARTING RECORD NUMBER? 71
```

AS YOU OBSERVED IN THE FILM, WE CAN VARY THE FORCE WE APPLY 2
BY USING DIFFERENT NUMBERS OF RUBBER LOOPS STRETCHED A CON3
STANT LENGTH; I SUGGEST 60 CM FOR ALL LOOPS IN THIS EXPERIMENT 4
YOU SPECIFY THE FORCE YOU'LL APPLY IN EACH TRIAL AND 5
MAKE THE SIMULATED RUN. THEN I'LL DETERMINE ACCELERATION 6
FROM THE TICKER TAPE AND PLOT A GRAPH OF ACCELERATION V.
7
FORCE WHEN WE HAVE ENOUGH DATA.

RIGHT! IN FACT, THERE APPEARS TO BE A LINEAR RELATIONSHIP 9
BETVEEN FORCE AND ACCELERATION IF WE OVERLOOK THE IRREGULARITIES 10
PROBABLY CAUSED BY EXPERIMENTAL ERROR.

NOTE THAT THE GRAPH DOES NOT PASS THROUGH THE ORIGIN. 12
APPARENTLY THE CART DOES NOT ACCELERATE WHEN WE APPLY A 13
SMALL POSITIVE FORCE. WHAT COULD CAUSE THIS?
14

COULD IT BE FRICTION?

FINE! THE FORCE OF FRICTION IS REPRESENTED BY THE INTERCEPT 16
OF THE GRAP WITH THE FORCE AXIS.
17

HAD WE USED A CART WITH GREATER FRICTION THAN IN OUR EXPERIMENT 18
WOULD THIS INTERCEPT BE TO THE RIGHT OR LEFT OF ITS
19
PRESENT LOCATION? (TYPE 'RIGHT' OR 'LEFT')

CORRECT! NEXT, I'M GOING TO TAKE THE DATA WE COLLECTED AND PLOT 21

THE RESULTANT FORCE ACTING ON THE CART, INSTEAD OF THE 22

FORCE YOU APPLIED IN EACH RUN. (THE RESULTANT OR NET FORCE 23

IS THE FORCE YOU APPLIED MINUS THE FORCE OF FRICTION.)

AS WE OBSERVED IN THE LAST EXPERIMENT, MASS HAS AN INVERSE

RELATIONSHIP TO ACCELERATION WHEN A CONSTANT FORCE IS

APPLIED. IN THE NEXT EXPERIMENT WE'LL CONDUCT A QUANTITATIVE

STUDY OF THIS RELATIONSHIP.

TO SUMMARIZE, WE CAN SEE FROM OUT DATA THAT ACCELERATION IS

DIRECTLY PROPORTIONAL TO THE NET FORCE WHEN THE MASS REMAINS 30

CONSTANT. THE EQUATION FOR THE RELATIONSHIP IS: A=KF. I

SHOULD EMPHASIZE THAT F REPRESENTS THE NET OR RESULTANT 32

FORCE; IT IS THE VECTOR SUM OF ALL FORCES ACTING ON THE 33

OBJECT. NOW, TRY THIS PROBLEM: 34

CORRECTI

35

YOU HAVE NOW COMPLETED THIS SIMULATED EXPERIMENT. PERHAPS

YOU WILL BE ABLE TO PURSUE THE INVESTIGATION FURTHER AT 37

HOME OR IN YOUR LAS.

38

AFTER YOU'VE SIGNED OFF THE TERMINAL, ROLL OUT SEVERAL 39

INCHES OF PAPER. ON IT LIST THE SOURCES OF EXPERIMENTAL

ERROR AS YOU ENVISION THEM AND STATE THE MAJOR CONCLUSIONS

YOU CAN DRAW FROM THE EXPERIMENT. INCLUDE THIS PAPER IN

YOUR PHYSICS NOTEBOOK.

AS SOON AS YOU HAVE THE OPPORTUNITY VIEW THE NEXT FILM 44 LOOP 'FORCE & MOTION III', THEN RUN 'FORCEC'. 45

URONG. THE GRAPH CAN BE REPRESENTED BY A STRAIGHT LINE 46
PASSING THROUGH THE ORIGIN. FROM YOUR WORK IN ALGEBRA 47
YOU KNOW THE EQUATION FOR 'STRAIGHT LINE: Y=MX+B. (M 48
IS THE SLOPE AND B THE X-INTERCEPT.) IN THIS CASE, WE'RE 49
USING 'A' TO REPRESENT ACCELERATION ON THE VERTICAL AXIS 50
AND 'F' FOR THE FORCE ON THE HORIZONTAL AXIS. THE FORCE 51
INTERCEPT IS 0. TRY THE QUESTION AGAIN.

52 RECORDS IN FILE lung2

52

```
CED
FILES LUMFS
DIM ASC62],HE13,10],OC13,10]
MAT N=ZER
HAT D=ZER
AMINT "HELLO AGAIN. IN THIS THIPP MY GOOD OF THE CERIES WE WILL STUDY HOW
PRINT "CONSTANT FONCE ACCELERATES DIFFERENT MASSES. HAVE YOU COMPLETED "FORCEB"
FRIDT "BHD THEN MIEWES FILM LOOP *FORCE & LATION HILYS"
THPUT AT
IF AS="YES" THEN 110
· IF AS: "Yes" THEH 2710
 FRINT 'IN THE FIRST EXPERIMENT OF THIS SERIES WE DESERVED THAT CONSTANT"
 PRINT "FURCES CHUSE A TUDY TO UNDERSO A COMSTANT ACCELERATION.
 PRINT "LAST EXPERIMENT RE WELD THE MASS CONSTANT FUR DESERVED WHAT KIND D
 PRINT " PELATIONEMIP BETWEEN ACCELERATION AND FORCE?"
 LET L=0
  DEPUT HE
 IF AS="DIPECT" THEN 210
  IF "AS="proser" THEN 210
 IF 68="LINE62" THEN 210
 IF ADD"LINEAP" THEN 2750
 FEAD #1.1
 FOR I=1 TO 5
 READ #13AB
 FRITT AS
 HEXT I
 PRINT "TYPE DELOW THE AMOUNT OF STRETCH IN OM YOU WILL APPLY DURING THE"
 PRINT "RUNS THROUGHOUT THIS EXPERIMENT."
 IMPUT B
 IF BK50 THEN 2630-
 IF B>100 THEH 2670
 PEAD #1.6
 FOR I=1 TO 9
 PERD #1;A%
 PRINT AS
 DEST I
 FD7 L=1 TO 12
 PRINT "HOW MAMY BRICKS ARE YOU USING FOR A LOAD IN THIS RUN?"
 IMPUT C
 IF CKI THEN 2550
 IF C>10 THEN 2600
 LET M=(0+1)>5
 LET H=INT(40>B/M+.5)/10
 IF 0024 THEN 450
 LET HEAVENING I=1
 IF 50/AN18 THEM 470
 LET DE50/A+1,03=1
 PRINT "FOR YOUR TOTAL MASS OF";0*1;" BRICKS, THE ACCELERATION"
 PRINT "Was:";A:" CMZSECZSEC. [1/A=";INT(1000ZA)Z1000;"]"
 77 1 THEN 570
         RE YOU'D LIKE TO MAKE ANOTHER RUN TYPE 'RUN'; IF YOU'D LIKE ME TO"
```

BEST COPY AVAILABLE

```
PRINT "GRAPH A VERSUS M TYPE 'PLOT'."
519
500
     INPUT AS
530
     IF AS="PLUT" THEN 580 -
540
     IF A©≈"FUDT" THEN 580
550
     IF As="RUN" THEN 570
     IF ASO "BUN" THEN 1520
560
570
     NEXT L
580
     PPINT
590
     GDSUB 2030
     PRINT "STUDY THE GRAPH CAREFULLY. CAN YOU OBSERVE ANY REGULARITIES?"
壳连锁的
5.10
     THPUT AS
     IF AS="YES" THEN 640
v \ge 0
     IF Ase "Yes" THEN 1540
630
     PRINT "WHAT KIND OF RELATIONSHIP EXOSTS BETWEEN ACCELERATION AND MASS
6.49
     (DIRECT"
     PRINT "OR INVERSE)?"
650
580
     IMPUT AS
     IF AS="INVERSE" THEN 690
570
心管的
     IF A5#"INDERSE" THEN 2450
= 0.0
     PEAD #1:15
\mathbb{F}(0)
     FOR I=1 TO 10
710
     帝田自立 (413百多
228
     PRINT AS
730
     HEXT I
240
     MAT HED
'59
     LET L=1
75.0
     60300 2030 B
779
     FRITT "AMA! VERY INTERESTING."
     PRINT "THIS GRAFA DOES MAKE THE PELATIONSHIP MORE UBVIOUS. DA YOU SEE WH
730
1411
     FRINT "I MEAN?"
     IMPUT 93
300
3 \pm 0
     LET L≔0
880
     PRINT "THE LINEAR GRAPH INDICATES A DIRECT PELATIONSHIP BETWEEN THE TWO"
330
     PRINT "VOPIABLES WE'VE PLOTTED. "
     PRINT "WRITE AN EQUATION TO FIT THIS GRAPH. DO NOT BOTHER TO CALCULATE T
S 144
     EPHINT "SLOPE; INSTEAD PEPPESENT THE SLOPE WITH THE CONSTANT "K"."
11
     FRINT "BEGIN THE EQUATION: 1/A= ..."
136.33
370
     IMPUT AS
     IF AS="1/A=KM" THEN 1040
3300
390
     IF AS="1/A=KM" THEN 1040
     IF AS="1/A=K+M" THEN 1040
5000
     IF A%="1/A=K◆H" THEN 1040
910
9.20
     IF A%="1/A=KXN" THEN 1040
11.39
     IF 8%="178=KyM" THEN 1040
     IF H3="1/A=KXM" THEN 1040
35.13
     IF 85="1/A=KXM" THEN 1040
550
(0.5,0)
     TE 68="176=9K" THEN 1040
97.0
     IF ASA"1/A=MK" THEN 1040
\cdot \cdot \cdot \cdot \cdot 0
     IF AGE"IVAEMMK" THEN 1040
\{P, P\}
     IF A&="1/A=Mxk" THEN 1040
1000
      - IF | 自宝="1/a=a以6" | THEN | 1040
      IF A%="1/A=MVM" THEN 1040
1010
្រុកប្រកួត
      IF AS="1/A=M+K" THEN 1040
```


IF A&#"1/A=M*K" THEN 2310

1.050

 $f_{ij} \ge 0$

25.00

540

6010 520

ERIC INCREASES"

LET L=0

PEAD #1,25

```
100.0
      FUP [=1 TU 8
1070
      PEAD #118%
      PPINT AS
1.630
1090
      MEXT I
      LET E=4+B/75
1100
      PRINT "MASS OF POCK AND CART (TO THE NEAREST 10TH BRICK)?"
1110
1130
      LET L=0
      INPUT D
1130
      LET F=INT(D+.5)
1140
1150
      IF F#INT(E+.5) THEN 1570
1160
      PRINT "OK; THE MASS OF ROCK AND CART IS:";E;" BRICKS."
1170
      PRINT "WHAT IS THE MASS OF THE ROCK ALONE?"
(130)
      LET L=0
1490
      INPUT F
1.-00
      IF F=D-1 THEN 1820
1210
      IF INT(F+.5)#INT(E-.5) THEN 1680
1220
      READ #1,33
1230
      FOR [=1 TO 6
1640
      PEAD #13AB
1250
      RPIHI AS
      HEXT I
1260
1270
      LET L≈0
1380
      PRINT "HOW TRY THIS PROBLEM:"
      PRINT "A CAR HOS A MAMINUM ACCELERATION OF 8 MUSECUSEC. IF THE CAR TOWS"
1290
      PRINT "ARBITHER CAR OF IDENTICAL MASS AND DESIGN, WHAT WILL BE THE MAMINUM"
1,300
      PRINT "ACCEL. IN MYCEC/SEC?"
1310
t = \partial_t \theta
      INPUT D
13:0
      IF 004 THEN 1800
      PRINT "GOOD! NOW HERE'S ANOTHER PROBLEM:"
1340
      ARINE "MASS A POCELERATES AT 30 PT/SEC/SEC AND MASS B ACCELERATES AT"
1350
1350
      PPING "20 FT/SEC/SEC WHEN IDENTICAL FURCES ARE APPLIED."
1.70
      PRINT "WHAT IS THE RATIO: MASS AZDASS B?"
1.2330
      THEUT ES
1300
      IF AS=".25"
                  THEN 1420
      TF HEA"1/4" THEN 1420
1400
1410
      IF AC:"1:4" THEN 1910
1430
      PRINT "CORRECT!"
      PRINT "YOU HAVE MOW COMPLETED THIS SIMULATED EXPERIMENT. PERHAPS YOU WILL
1430
      PRINT "ABLE TO PURSUE THE INVESTIGATION FURTHER AT HUME OF IN YOUR LAB. "
1440
      PRINT "AFTER YOU'VE STONED DEF THE TERMINAL POLL OUT SEVERAL EXTRA INCHES
1450
      PRINT "PARER. ON IT LIST THE ENGAGES OF EMPARTMENTAL EFFOR AS YOU ENVISION
1.45.11
      FRINT "THEM AND STATE THE MILLOR CONCLUSIONS YOU CAN DRAW FROM THE
1.;
      EXPLEMENT."
14330
      PRINT "INCLUDE THIS PAPER IN YOUR PHYSICS ADJETCH:"
1.4 \cdot 0
      PRINT "AS SOUN AS YOU HAVE THE OPPORTUNITY VIEW THE NEXT FILM LOOP (FORCE
1500
      PRINT "MOTION IV AND PUN FORCEDS."
t 51 O
      GDTO 2330
```

PRINT "YOU DIDN'T TYPE 'PLOT' OR 'RUN'. AGAIN, WHICH SHOULD WE DO?"

PRINT "LOOK AT THE GRAPH AGAIN. THE PLOTTED POINTS SHOW THAT AS MASS

BEST COPY AVAILABLE

- 100 PPINT "ACCELERATION DECREASES: THE PLOT FORMS A SMOOTH CURVE." 1550 1560 GOTO 640 IF LOT THEN 1640 1570 1580 LET L=L+1 1590 PRINT "SURRY, YOU'RE WRONG. AN EASY WAY TO DETERMINE THE TOTAL MASS I: G0" PRINT "THE GRAPH FOR AN ACCELERATION OF 15.0CM/SEC/SEC. AHSWER THE QUESTION" PRINT "BACK TO THE FIRST GRAPH OF A V. M AND READ THE MASS DIRECTLY FI 1600 1610 PRINT "AGAIN." 1620 1630 GOTO 1130 PRINT "WRONG AGAIN. THE ANSWER IS :";E;" BRICKS. IF YOU DON'T UNDERST 1640PRINT "DISCUSS THIS WITH YOUR TEACHER AS SOON AS POSSIBLE. MOW WHAT IS 1656 MASS" 1660PRINT "OF THE ROCK ALONE?" 1670 GOTO 1190 1680 IF L>1 THEN 1760 LET L=L+1 16901700 READ #1:53 1710 FOR I=1 TO 5 1720 READ #13A% 1730 PRINT AS 1740 MENT I 1750 60TO 1190 PPINT "NO. THE MASS OF THE RICK IS: "E-1;" BRICKS. YOU NEED ASSISTANCE 1760 1770 PRINT "INTERPRETING THE GRAPH." PRINT "CONSULT WITH YOUR TEACHER BEFORE CONTINUING THIS PROGRAM." 1790 1790 GOTO 2830 1800 IF L)1 THEN 1850 1810 LET L=L+1 PRINT "INCORRECT. REMEMBER, ACCEL. IS INVERSELY PROPORTIONAL TO MASS. 1980 TWICE" PRINT "THE MASS IS PRESENT IN THE END ACCELEPATION. ANSWER THE OUGSTI 1830 AGAIN." 1849 GOTO 1320 1850 READ #1,58 1860 FDA I=1 TO 4 1870 尺层角顶 #13角多 1839ER THIGH 1090 HEXT I 1900 GOTO 1350 IF L)2 THEN 2000 1910 1920 LET L=L+1 1930 PEAD #1,68
- 1540 FOR I=1 TO 2
- 1950 PEAD 013A%
- 1950 PRINT AS
- 1970 REXT I
- PRINT "TRY THE QUESTION AGAIN." 1980
- 1990 50TO 1370
- PRINT "THE ACCELERATION RATIO IS THE INVERSE OF THE MASS PATIO OR 1/4 2900
- PRINT "YOU HEED FURTHER ASSISTANCE IN UNDERSTAMBING THIS CONCEPT." 2010
- 2020 60TO 1780
- 2030 FOR Y=12 TO 1 STEP -1
- (I-I-I) FEHIL HS
- a U FRINT ASF

```
2060 IF YV20INT(YV2) THEN 2170
2070
       IF L=1 THEN 2100
2080
       PRINT TAB(7);2+Y;
\partial \theta \ni 0
       60TO 2170
2100
       IF 2+Y=8 THEN 2140
2110
       IF 2+Y=4 THEN 2160
2120
       PRINT TAB(6);"."2+Y;
\pm 1.30
       60TO 2170
       PRINT TAR(6);". 08";
2140
2150
       GOTO 2170
2160 PRINT TAB(6);". 04";
2170
       FOR X=1 TO 10
2180
       IF MEY+1,X3=1 THEN 2220
3190
       MEMT X
22n0
       PRINT TAB(13);"+"
3210
       6010 2230
2220
       PRINT TAB(13);"+";TAB(13+(X+1)+4);"X"
2230
      NEXT Y
       PRINT "
0.240
2250
       PRINT TABC13);"0
                            1
                                2
                                     3
                                          4
                                              5
                                                   €.
                                                        7
                                                            8
                                                                     1.0
                                                                          11"
J.250
       PRINT TAB(27);"TOTAL MASS (BRICKS)"
2270
       PRINT
2290
       DATA "A","C","C","E","E","E(CM/SEC/SEC)","P","A","T","I","D","N"
Je200
       DATA "",",",",",",",","," 1/A ",",",",",",",",",",","
2300
      RETURN
∂310
       IF L>1 THEN 2390
3220
      LET LaL+1
330
       35AD #1,43
3340
      FOR !=1 10 6
350
       -EAD #119%
360
      PRINT AS
370
      MEXT I
 (2.29)
      60TO 840
e jean
      PERD #1,49
7400
      FOR I=1 TO 4
S-110
      PERD #1380
6420
      FRIAT AS
3430
      HENT I
្នាជ្ញា
      50TB 840
经过行证
       IF AS="DIRECT" THEN 2490
3450
       IF 88="proper" THEN 2490
2470
      PRINT TYDUR ANSWER MUST BE IDIRECTI DR IINVERSEL. SO. AGAIN --"
2430
      60TO 640
2450
      FEAD #1,39
500
      FOR I=1 TO 4
7.510
      PERD #1;A&
(\mathcal{M}_{\mathcal{G}}) \in \mathcal{M}
      PPINT HS
      HEXT I
253#
PS440
      00TO 640
\mathcal{F}_{\mathcal{C}_{p}}(G, \mathcal{C}_{p})
      PRINT "YOU WILL FIND THAT IF YOUR CAST HAS NO BRICKS ON IT AND YOU REPLY A"
      PRINT "FORCE OF": 8: " ON THE CART WILL TAKE OFF SO FAST YOU WEN'T BE ABLE
      TO"
2570
      PRINT "APPLY A CONSTANT FORCE. I SUGGEST AT LEAST 1 BRICK FOR A LOAD."
535.11
      PRINT "SU: AGAIN --"
2556
      GOTO 370
       PRINT "WITH MORE THAN 10 BRICKS THE CART IS VERY SLOW AND HARD TO HANDLE."
```

BEST COPY AVAILABLE

ERIC

- 2610 PRINT "DON'T USE MORE THAN 10 BRICKS. SO, AGAIN --"
- 2620 60TO 490
- 2630 PRINT "THE UNSTRETCHED RUBBER LOOP IS ALMOST 50 OM LONG WHEN WE STRETCH
- 2640 PRINT "LOOP LESS THAN SOOM WEYRE NOT APPLYING A SIGNIFICANT FORCE TO TH
- 2650 PRINT "CART. SO, AGAIN--"
- 2660 | 6**070 260**
- 2670 PRINT "WE'RE STRETCHING THE LODP WITH A METER STICK WHICH IS 100CM LONG YOU"
- 2680 PRINT "CAR'T APPLY A CONSTANT FORCE ACCURATELY IF THE STRETCH EXCEEDS"
- 1699 PRINT "1000M. SD, AGAIN --"
- 3700 GDTD 260
- 2010 PRINT " THIS PROGRAM IS THIRD IN A SERIES. SINCE THE COMCERTS DEVELOPED
- 1720 PRINT "ARE SEQUENTIAL YOU SHOULD BEGIN BY VIEWING THE FILM LEGR PROPOS
- 8730 PRINT "MOTION IN AND THEN RUN MEDROCAM"."
- 2740 **5878** 2830
- 2750 IF L=0 THEN 2810
- 2760 LEV L=L+1
- TIZA PRINT "YOU INDULD KNOW THE CORPECT ANSWER TO THIS QUESTION IF YOU'VE LE
- 3780 PRINT "THYOUGH FORCER. I'LL GIVE YOU DHE MORE CHARGE TO TYPE IT"
- STYPE PRINT "PROPERLY."
- 2800 6010 160
- 2810 PRINT "RUN THE PROGRAM "FORCER" BEFORE CONTINUING."
- 2920 GATA 2830
- ESSO FRINT "TO SIGN OFF THE TERMINAL TYPE 'BYE' AND PRESS THE RETURN KEY."
- 2840 END

·lunf3

1

- MESHT. HOW TO STUDY HOW ACCELERATION MARIES WHEN THE OBJECT'S
- MOSS IS CHAMGED WERLL TRY TO HOLD ALL OTHER MARIAILES COH-
- STANT, WE II. APPLY THE SAME FORCE TO THE CAPT IN ALL PURS BY
- FEERING ONE LODE OF PURBER STRETCHED A CONSTANT LENGTH. (WE $^{\rm S}$
- COM STRETCH DUR LOOP BETWEEN 50 AND 100CM.)
- WE CAN MARY THE CART'S MASS BY USING DIFFERENT NUMBERS OF
- IDENTICAL BRICKS FOR A LOAD. THE MASS OF THE EMPTY CAPT
- WE'LL USE HAS BEEN ADJUSTED TO EQUAL THE MASS OF THE BRICK.
- YOU SPECIFY THE NUMBER OF BRICKS YOU'LL USE FOR A LOAD IN
- EACH TRIAL AND MAKE THE SIMULATED BUN. THEN I'LL DETERMINE
- BOCKLERATION FROM THE TICKER TAPE AND PLOT A GRAPH OF
- DOCELERATION V. MOSS. PEMEMBUR, THE MASS YOU'RE ACCELERATING 13
- 13 DRE SPICK LARGER THAN THE LOAD YOU SPECIFY SINCE THE CART 14
- HAS A MASS OF 1 ERICK.

15

- PIGHT: AS THE CAPTAS MASS GETS LARGER THE ACCELERATION GETS 16° MALLER UNDER THE INFLUENCE OF A CONSTANT FORCE.
 - 17
- THUR NEXT THICK IS TO FIND AN ALGEBRAIC EXPRESSION FOR THE
- FOLATIONSHIP BETWOEN ACCELERATION AND MASS. A STUDY OF DUR
- GMOPH SUGGESTS THAT IT MIGHT BE A 1ST POWER INVERSE FELATION—
- HIP. THAT IS: ACCEL. IS DIRECTLY PROPERTIONAL TO 1:MASS.
- OR MASS TO DIRECTLY PORPORTIONAL TO IMAGGELERATION. TO CHECK as
- OUT THIS PRODICTION I WILL PLOT A NEW GRAPH OF 1/A VERSUS $^{\circ\circ}$
- MOSS FOR EACH OF DUP RIALS USING THE DATA WE COLLECTED. - 24

HERE'S THE MEW GRAPH:

25

PIGHT: THERE IS A DIRECT RELATIONSHIP BETWEEN 1/A AND MASS; -26

K COULD OF COURSE BE REPLACED BY THE NUMERICAL VALUE FOR THE $27\,$

SLOPE OF THE LINE.

28

HERE IS A PROBLEM FOR YOU TO TRY USING YOUR GRAPH AND THE

SIMULATED APPARATUS: A ROCK OF UNKNOWN MASS IS PLACED ON OUR 30

UNLDADED CART. YOU MAKE A RUN WITH IT APPLYING THE SAME FORCE 31

AS YOU DID IN THE OTHER PUNS. MY AMALYSIS OF THE TAPE INDI-32

CATES AN ACCELERATION OF 15.00M/SEC/SEC. WHAT IS THE TOTAL 33

GOOD! THIS IS ONE METHOD WHICH CAN BE USED TO DETERMINE THE

INERTIAL MASS OF AN OBJECT.

TO SUMMARIZE: WE CAN SEE FROM THE GRAPHS OF OUR DATA THAT 36

THE ACCELERATION OF AN OBJECT IS INVERSELY PROPORTIONAL TO 37

ITS INERTIAL MASS WHEN A CONSTANT FORCE IS APPLIED, AND 38

THE EQUATION YOU WROTE FOR THE RELATIONSHIP IS: 1/A=KM.

WRONG. WHEN 2 VARIABLES ARE DIRECTLY RELATED, ONE INCREASES 40

AS THE OTHER INCREASES. LOOK AT YOUR GRAPH AGAIN. IT SHOWS 41

THAT THE ACCELERATION BECAME SMALLER AS THE MASS INCREASED. 42

THIS MERNS THAT THE VARIABLES ARE INVERSELY RELATED. SD 43

MRONG. THE GRAPH CAN BE REPRESENTED BY A STRAIGHT LINE PASS-

ING THROUGH THE ORIGIN. FROM YOUR WORK IN ALGEBRA YOU KNOW 45

THE EQUATION FOR A STRAIGHT LINE. (Y=MX+B WHERE M IS THE -46

SLOPE AND B THE X-INTERCEPT.) IN THIS CASE WE'RE PLOTTING 1/A -47

OH THE VERTICAL AMIS AND MASS ON YOR MEADLONIBL MYIS. THE

48 UASS INTERCEPT IS 0. TRY THE OUESTION AGAIN. 49

HO. THE EQUATION SHOULD BE EMPRESSED AS: 1/A=KM. IF YOU 50
DON'T UNDERSTAND WHY DISCUSS THIS WITH YOU TERCHER AS 51
SOON AS POSSIBLE. HOW HERE'S THE QUESTION ONCE MORE. TYPE

- 52 - 52 IN TUE CONSTITUTION INDESTATES

IN THE EQUATION IAVE STATED. 53

0.3

NO, YOU'RE WRONG. RENEMBER THAT WE ACCELERATED THE ROCK AND 54

THE CART AND WE HAVE PLOTTED THE TOTAL MASS. TO FIND THE 55

MASS OF THE POCKIWE MUST SUBTRACT THE CARTIS MASS (1 BRICK) 56 FROM THE TOTAL MASS DETERMNED IN THE LAST QUESTION.

TRY THE QUESTION HEAIN.

58

57

MRONG. WITH TWICE THE MASS THE CONSTANT FORCE CAUSES 1/2 59 THE ORIGINAL ACCELEPATION OR 4M/SEC/SEC. IF YOU DON'T 60 UNDERSTAND DISCUSS THIS WITH YOUR TEACHER AS SOON AS

POSSIBLE. NOW HERE'S ANOTHER PROBLEM.

68

HO. THE PROBLEM ASKS FOR THE RATIO OF MASS AVMASS B. THIS IS 63 EQUIVALENT TO ACCEL.BYACCEL.A DUE TO THE INVERSE RELATIONSHIP. 64


```
list
FORCED
```

10

FILES LUNF4

```
20
    DIM ASC651
30
    READ #1,1
40
    FOR 1=1 TO 4
50
    READ #1; AS
    PRINT AS
60
    NEXT I
70
    INPUT A5
80
    IF AS="yes" THEN 110
90
    IF ASS YES THEN 2870
100
110
     READ #1,5
120
     FOR 1=1 TO 6
130
     READ #1;AS
140
     PRINT AS
150
     NEXT I
160
     LET L=0
170
     INPUT AS
     IF AS="inverse" THEN 200
IF AS# INVERSE" THEN 2930
160
190
800
     READ #1,11
210
     FOR 1=1 TO 12
220
     READ #1;AS
230
     PRINT AS
240
    HEXT I
     PRINT "I'VE JUST TYPED A LOT OF INFORMATION HERE. READ IT CAREFULLY AND TYPE"
250
260
     PRINT "'GO" WHEN YOU WANT ME TO CONTINUE."
```



```
270
     INPUT AS
     IF AS="GO" THEN 330
280
     IF AS="90" THEN 330
220
     PRINT "YOU DIDN'T TYPE 'GO". I CAN'T CONTINUE UNTIL YOU DO."
300
     PRINT TYPE 'GO' AND WE'LL CONTINUE."
310
300
    GOTO 270
     PRINT "IN THE EQUATION K IS A CONSTANT OF PROPORTIONALITY AND ITS"
330
    PRINT "NUMERICAL VALUE DEPENDS UPON THE UNITS USED TO MEASURE FORCE,"
340
350
    READ /1.23
    FOR I=1 TO 18
360
370
    READ OLIAS
    PRINT AS
380
390 NEXT 1
400
    LET L=0
    PRINT "WHAT IS THE NET FORCE (IN NEWTONS) ACTING ON THE SPACESHIP?"
410
    INPUT AS
420
    IF AS="1200" THEN 450
430
    IF ASE"1,200" THEN 1660
440
450
    PRINT "CORRECT! NOW HERE'S A SLIGHT VARIATION OF THE SAME PROBLEM:"
   PRINT TAN 80KG ASTRONAUT IN MOUILIBRIUM OUTSIDE HIS SPACESHIP RECEIVES AT
460
   PRINT "40H FORCE FROM A PROPULSION JET ATTACHED TO HIM.
470
    LET L=0
480
     PRINT "UNAT ACCEL. (IN M/SEC/SEC) DOES HE EXPERIENCE?"
490
500
     IMPUT AS
    IF AS=".5" THEN 530
IF ASJ"1/2" THEN 1820
510
520
530
     READ 01,41
540
     FOR I=1 TO 2
     READ #1;A5
550
560
     PRINT AS
    NEXT I
570
     PRINT "TRY THIS PROBLEM AGAIN WHICH INVOLVES NEGATIVE ACCELERATION: A 2000"
560
     RDAD #1,43
590
600
     FOR 1:1 TO 4
610
     READ #1;AS
620
     PRINT AS
630
     NEXT I
    LET L=0
640
     INPUT AS
650
    IF AS="4000" THEN 700
660
    IF AS="4,000" THEN 700
IF AS="-4000" THEN 700
670
683
     IF AS# -4,000" THEN 1880
690
700
     LET L=0
710
    READ 01,47
     FOR I=1 TO 6
720
    READ #1;AS
730
740.
    PRINT AS
    NEXT I
750
    PRINT "WHAT IS THE FRICTIONAL FORCE ACTING ON THE STOVE IN N?"
760
    INPUT AS
770
780
    IF AS="250" THEN 800
    IF ASO"-250" THEN 2000
720
003
    LET L=0
610 READ #1,53
```



```
820
     FOR I=1 TO 4
     READ #1;AS
830
     PRINT AS
840
     NEXT I
850
     INPUT D
860
      IF D#1.5 THEN 2100
870
850
     READ #1,57
     FOR I=1 TO 4
890
900
     READ #1;AS
     PRINT AS
910
920
     HEXT I
     PRINT TAB(9);"10+"
930
     PRINT TRECOT; 10*

PRINT "V"; TAB(11); "+"

PRINT "E"; TAB(10); "8+"; TAB(27); "X

PRINT "L"; TAB(11); "+"; TAB(23); "X"

PRINT "O"; TAD(10); "6+ X"; TAB
940
950
960
970
                                     X"; TAB(37); "X"
     PRINT "C (M/SEC) + X"
980
     PRINT "1"; TAB(10); "4X"; TAB(39); "X"
990
     PRINT "T"; TAG(11); "+"; TAB(41); "X"
1000
      PRINT "Y"; TAB(10); "2+"; TAB(43); "X"
1010
      PRINT TAB(11); "+"; TAB(45); "X"
1020
      PRI:IT TAB(10); "0+ + + + + + +
1030
                                               + + + + + + + + X + +*
                          2 4 6 8 10 12 14
      PRINT TADCLID: "0
1040
      PRINT TAB(26); "TIME (SEC)"
1050
1060
      LET L=0
      READ 01,61
1070
      FOR I=1 TO 2
1080
1090
      READ #1; AS
      PRINT AS
1100
      NEXT I
1110
      PRINT "1. THE NET FORCE ACTING ON THE OBJECT WAS 0 AT: (A) 0 SEC; (B)"
1120
      PRINT "4SEC; (C) 10SEC; (D) 13SEC; (E) 16SEC; (F) NONE OF THE ABOVE"
1130
1140
      INPUT AS
       IF AS="C" THEN 1170
1150
       IF ASO"C" THEN 2260
1160
1170
      READ #1,64
1100
      FOR I=1 TO 4
1190
      READ #1;A5
1200
      PRINT AS
      NEXT I
1210
1220
      INPUT AS
       IF AS="d" THEN 1250
1230
      IF ASO D THEN 2360
PRINT "GOOD!"
1240
1250
      PRINT "3. THE NET FORCE WAS CONSTANT BETWEEN: (A) 6-9SEC; (B) 9-13SEC;
1260
      PRINT "(C) 13-15SEC; (D) 15-18SEC; (E) NONE OF THE ABOVE"
1270
      IMPUT AS
1280
      IF As="d" THEN 1310
1290
       IF ASO"D" THEN 2450
1300
      PRINT "CORRECT!"
1310
1320
      LET L=0
      PRINT "4. WHAT WAS THE ACCEL. OF THE OBJECT (IN M/SEC/SEC) AT 6 SEC?"
1330
      INPUT AS
1340
      IF AS=".5" THEN 1370
1350
      IF AS# 1/2" THEN 2540
1360
```



```
1370
      PRINT "FINE!"
      PRINT "5. DETERMINE THE NET FORCE (IN N) AT 6 SEC. (OBJECT HAS MASS OF 10KG)"
1330
1390
      INPUT D
1400
     IF D#5 THEN 2630
      PRINT "VERY NICE."
1410
      PRINT "YOU'LL NOTICE ON THE GRAPH THAT THIS CONSTANT FORCE OF SN WAS APPLIED"
1423
     PRINT "FROM OSEC THROUGH 8 SEC. NOW, THE FINAL PROBLEM:
1430
     PRINT "6. DETERMINE THE FORCE (IN N) ACTING AT 13 SEC."
1440
1450
     LET L=0
1460
     INPUT D
1470
     IF ABS(D) #20 THEN 2700
1480
      READ #1.68
      FOR 151 TO 17
1490
1500
      READ #11AS
     PRINT AS
1510
1520
     NEXT I
1530
     LET L=0
      PRINT BEGIN THE EQUATION: For ... AND DO NOT INCLUDE A MULTIPLICATION SIGN.
1540
1550
      INPUT AS
     IF AS="F=MA" THEN 1640
1560
     IF As="f=ma" THEN 1640
1570
     IF AS="F=KMA" THEN 1640
1580
     IF A5="f=km8" THEN 1640
1590
     IF AS="A=F/M" THEN 1640
1600
     IF AS="8=f/m" THEN 1640
1610
      IF A3="a=Kf/m" THEN 1640
1620
     IF ASP A=KF/M THEN 2780
PRINT AUF WIEDERSEHEN
1630
1640
1550
      GOTO 3030
1660
     IF L>1 THEN 1740
     LET L=L+1
1670
1680
     READ #1,91
1690
     FOR 1=1 TO 3
1700
     READ #1;AS
     PRINT AS
1710
1720
     NEXT I
1730
      GOTO 410
1740
     READ #1,94
1750
      FOR 1=1 TO 3
1760
     READ #11AS
1770
     PRINT AS
1780
     NEXT I
1790
      GOTO 460
1890
     IF L>1 THEN 1840
1310
     LET L=L+1
1820
      PRINT "NO. SINCE F=MA, A=F/M. TRY THE PROBLEM AGAIN:"
1830
      COTO 490
1840
             '40N/80KG=1/2M/SEC/SEC."
      PRINT
      PRINT "YOU NEED FURTHER ASSISTANCE IN UNDERSTANDING THIS CONCEPT. CONSULT"
1850
     PRINT "WITH YOUR TEACHER BEFORE CONTINUING THIS PROGRAM."
1860
1870
     COTO 3030
      LET L=L+1
1339
      IF L=3 THEN 1940
1820
      IF L>3 THEN 1850
1900
1910
      PRINT "WRONG ANSWER. FIRST FIND THE CAR"S ACCEL. (IT LOSES 3UM/SEC IN 15 SEC."
     PRINT "THEN: F=MA. CHECK THE PROBLEM AND TYPE IN YOUR NEW ANSWER."
1920
```



```
1930
      GOTO 650
      READ #1,97
1940
      FOR I=1 TO 4
1950
      READ #1;A5
1960
1970
      PRINT AS
1980
      NEXT I
1990
      GOTO 650
2000
      IF L>1 THEN 2080
2010
      LET L=L+1
2020
      READ #1,101
2030
      FOR I=1 TO 5
2040
      READ #11AS
2050
      PRINT AS
2060
      NEXT I
2070
      GOTO 760
2080
      PRINT "NO. THE FRICTIONAL FORCE IS 250N."
2090
      GOTO 1850
      LET L=L+1
2100
2110
      IF L=3 THEN 2196
      IF L>3 THEN 1850
2120
2130
      READ #1,106
2140
      FOR- I=1 TO 4
2150
      READ #11AS
2160
      PRINT AS
2170
      NEXT 1
2180
      GOTO 860
      PRINT "NO. MASS A=F/A=12/2=6KG; MASS B =12/6=2KG."
2190
5500
      READ $1,110
2210
      FOR I=1 TO 4
2220
      READ #11AS
2230
      PRINT AS
2248
      NEXT 1
2250
      GOTO 860
2260
      IF L>1 THEN 2320
2270
      LET L=L+1
      PRINT "WRONG. SINCE F=MA, THE FORCE = 0 WHERE THE ACCEL. = 0."
2280
      PRINT "THE ACCEL. = 0 WHERE THE VELOSITY IS NOT CHANGING. TRY THE PROBLEM"
2290
      PRINT "AGAIN AND TYPE IN THE CORRECT ANSWER"
2300
2310
      GOTO 1140
      PRINT "NO. THE ACCEL. IS 0 BETWEEN & AND 12 SEC. IF YOU DON'T UNDERSTAND"
5350
      PRINT "DISCUSS THIS WITH YOUR TEACHER AS SOON AS POSSIBLE. NOW, TYPE IN THE"
2330
      PRINT "LETTER OF THE CORRECT RESPONSE."
2340
2350
      GOTO 1140
      IF L>2 THEN 2430
2360
2370
      LET L=L+1
      PRINT
            "WRONG. SINCE F=MA, THE FORCE IS GREATEST WHERE THE ACCEL. IS GREATEST."
2380
      PRINT "REMEMBER THAT THE ACCEL. AT ANY POINT IS THE SLOPE OF THE V VERSUS T'
2390
      PRINT "GRAPH. FIND THE PLACE WHERE THE VELOCITY IS CHANGING AT THE GREATEST"
2400
      PRINT "RATE. NOW TYPE IN THE CORRECT ANSWER."
2410
      GOTO 1220
2420
2430
      PRINT "NO; THE FORCE IS GREATEST AT 13 SEC."
2440
      GOTO 1850
2450
      IF L>1 THEN 2520
2460
      LET L=L+1
      PRINT "INCORRECT. THE FORCE IS CONSTANT WHERE THE ACCEL. IS CONSTANT."
2470
      PRINT "REMEMBER THAT THE ACCEL. AT ANY POINT IS THE SLOPE OF THE V VERSUS T"
2480
```



```
PRINT "GRAPH. FIND THE LISTED TIME INTERVAL IN WHICH VELOCITY CHANGES AT A"
2490
     PRINT "CONSTANT RATE, AND TYPE IN THE CORRECT ANSWER."
2500
      G0TO 1280
2510
2520
     PRINT "NO. THE CORRECT CHOICE WAS 15-18SEC."
     PRINT "NO. THE CORRECT CHOICE IS 15-18 SEC."
2530
     IF L>1 THEN 2600
2540
     LET L=L+1
2550
     PRINT "WRONG. ACCEL. AT ANY POINT IS THE SLOPE OF THE V VERSUS T GRAPH."
2560
     PRINT "A=CHANGE IN V/CHANGE IN T. CHECK YOUR CALCULATION AND TYPE IN THE"
2570
     PRINT "CORRECT ANSWER."
2580
2590
      GOTO 1340
     PRINT "NO. THE SLOPE IS .5M/SEC/SEC. LOOK AT THE GRAPH AND SEE IF YOU AGREE."
2600
     PRINT "THEN TRY THIS QUESTION:"
2610
2620
     GOTO 1380
2630
     IF L>2 THEN 2680
2640
     LET L=L+1
2650
     PRINT "WRONG. F=MA. MULTIPLY THE MASS(10KG) BY THE ACCEL. CALCULATED IN THE"
     PRINT "LAST PROBLEM. CHECK YOUR CALCULATIONS AND TYPE IN THE CORRECT ANSWER."
2660
2670
     GOTO 1390
2680
     PRINT "NO. F=MA=10x.5=5N."
2698
     GOTO 1850
2700
     IF L>1 THEN 2760
2710
     LET L=L+1
     PRINT "INCORRECT. FIND THE ACCEL. AS YOU DID IN PROBLEM #4 ABOVE"
2720
2730
     PRINT "(CHANGE IN V/CHANGE IN T). THEN F=MA. CHECK YOUR CALCULATIONS AGAIN"
     PRINT "AND TYPE IN THE CORRECT FORCE."
2740
2750
      COTO 1460
     PRINT "NO, THE ANSWER IS: -20N."
2760
     GOTO 1850
2770
     IF L>0 THEN 2840
2780
2790
     LET L=L+1
      PRINT "YOU MUST BE KIDDING! I'VE SPENT ALL THIS TIME WITH YOU AND YOU CAN'T"
5800
     PRINT " SAY "F=MA"??"
2810
     PRINT "OH, THIS IS AWFUL! TRY TYPING THE EQUATION AGAIN."
2820
2830
      GOTO 1550
2849
      PRINT "NOW I'LL BELIEVE YOU'RE KIDDING. I'LL TYPE IT FOR YOU:"
     PRINT "F=MA"
2850
2860
      COTO 1640
     READ #1,85
2870
2880
     FOR 1=1 TO 3
2890
      READ #1; AS
2900
      PRINT AS
2910
      NEXT 1
2920
      GOTO 3030
2930
      IF L#0 THEN 3010
2940
     LET L=L+1
2959
     READ #1,88
2960
     FOR 1=1 TO 3
2970
     READ PIPAS
2980
     PRINT AS
2990
     NEXT I
3000
      GOTO 170
      PRINT "RUN 'FORCEC' BEFORE CONTINUING."
3010
3020
      GOTO 3030
      PRINT "TO SIGN OFF THE TERMINAL TYPE 'BYE' AND PRESS THE RETURN KEY."
3030
3040
```


END

```
WHAT FILE IS TO BE LISTED?
? 1 unf 4
 STARTING RECORD NUMBER?
71
HI! IN THIS FINAL PROGRAM OF THE SERIES WE WILL DISCUSS WHAT
WE'VE LEARNED ABOUT FORCE AND MOTION AND INTRODUCE A SYSTEM
OF UNITS IN COMMON USE. HAVE YOU COMPLETED 'FORCEC' AND THEN
VIEWED FILM LOOP 'FORCE & MOTION IV'?
 5
IN THE FIRST EXPERIMENT WE OBSERVED THAT A CONSTANT FORCE
CAUSES A BODY TO UNDERGO A CONSTANT ACCELERATION. IN THE
2ND EXPERIMENT WE OBSERVED THAT ACCELERATION WAS DIRECTLY
 8
PROPORTIONAL TO THE NET FORCE. IN THE 3RD EXPERIMENT WE
OBSERVED WHAT KIND OF RELATIONSHIP BETWEEN ACCELERATION AND
 10
MASS?
 11
CORRECT! WE MAY WRITE THIS LAST STATEMENT AS:
 12
1) M IS DIRECTLY PROPORTIONAL TO 1/A OR
 13
2) A IS DIRECTLY PROPORTIONAL TO 1/M
 14
FROM THE RESULTS OF EXPERIMENT 2 WE CAN WRITE:
3) A IS DIRECTLY PROPORTIONAL TO F
 16
STATEMENTS (2) & (3) CAN BE COMBINED AND WRITTEN AS:
A IS DIRECTLY PROPORTIONAL TO F/M
 18
AN EQUIVALENT STATEMENT IS:
MA IS DIRECTLY PROPORTIONAL TO F
```



```
20
OR: F IS DIRECTLY PROPORTIONAL TO MA
21
```

IN EQUATION FORM:

22

F=KMA

23

MASS, AND ACCELERATION. IT WOULD HAVE A SPECIFIC VALUE IF WE 24

CONTINUED TO MEASURE FORCE IN 'BANDS' AND MASS IN 'BRICKS'. 25

THE UNITS WE USED HAPPENED TO BE CONVENIENT FOR US, BUT

THEY ARE NOT IN COMMON USE IN THE WORLD. THE EQUATION, OFTEN 27

REFERRED TO AS NEWTON'S 2ND LAW, IS PERHAPS THE MOST FUNDA-28

MENTAL EQUATION IN CLASSICAL MECHANICS, AND THE UNIT OF FORCE 29

COMMONLY USED IS DEFINED SO THAT K IN THE EQUATION = 1.

IN SCIENTIFIC WORK A VERY COMMON UNIT OF MASS IN USE TODAY 31

IS THE KILOGRAM (KG). THE BASIC UNIT OF FORCE WILL CAUSE A 32

MASS OF 1 KILOGRAM TO ACCELERATE AT 1M/SEC/SEC. THIS UNIT OF 33

FORCE IS CALLED THE NEWTON (N). IN OTHER WORDS A FORCE OF IN 34

WILL CAUSE A MASS OF 1KG TO ACCELERATE 1M/SEC/SEC. USING THESE 35

UNITS THE EQUATION IS WRITTEN: 36

F=MA

IN=IKG M/SEC/SEC

38

SECOND) SYSTEM OF UNITS. A 600KG SPACESHIP IS PROPELLED BY

TRY THE FOLLOVING PROBLEM USING THE MKS (METER, KILOGRAM,

A ROCKET ENGINE. ITS ACCELERATION 15 2M/SEC/SEC.

RIGHT! IT IS IMPORTANT TO POINT OUT AS I DID IN EXP. 2 THAT F

REPRESENTS THE VECTOR SUM OF ALL FORCES ACTING ON THE OBJECT. 43

KG CAR IS TRAVELLING AT A SPEED OF 30M/SEC WHEN THE BRAKES

ARE APPLIED. THE CAR STOPS IN 15 SEC. IF WE ASSUME A CON-45 STANT ACCELERATION, WHAT WAS THE FORCE (IN N) APPLIED BY THE 46 BRAKES? 47

GOOD! THE NEGATIVE BRAKING FORCE PRODUCED A NEGATIVE ACCEL.

48

IF THE VECTOR SUM OF THE FORCES ON A OBJECT = 0, THEN THE

49

OBJECT WILL UNDERGO 0 ACCELERATION. IN OTHER WORDS ITS

50

VELOCITY WILL NOT CHANGE. HERE'S A PROBLEM ON THE SUBJECT:

51

TO PUSH MY STOVE ACROSS MY KITCHEN FLOOR AT A CONSTANT

52
SPEED OF IM/SEC, I MUST APPLY A FORCE OF 250N.
53

SURE! NOW TRY THIS PROBLEM: A FORCE OF 12N GIVES MASS A 54
AN ACCEL. OF 2M/SEC/SEC AND MASS B AN ACCEL. OF 6M/SEC/SEC. 55
WHAT IS THE ACCEL, (IN M/SEC/SEC) WHEN THE TWO ARE FASTENED 56
TOGETHER AND THE SAME FORCE IS APPLIED?

GOODI

57

THE LAST FEW QUESTIONS DEAL WITH THE GRAPH PRINTED BELOW 59 WHICH SHOWS THE VELOCITY OF A LOKG OBJECT ALONG A STRAIGHT 60 PATH. 61

IN THE NEXT 3 QUESTIONS TYPE IN THE LETTER OF THE BEST 62
RESPONSE:
63

64

CORRECT!

65

2. THE NET FORCE ACTING ON THE OBJECT WAS GREATEST AT:
66
(A) 0 SEC; (B) 4 SEC; (C) 10 SEC; (D) 13 SEC; (E) 16 SEC;

67 (F) NONE OF THE ABOVE.

OKI IT'S A GOOD IDEA TO WRITE THIS FORCE AS -20N SINCE 69
THE FORCE IS OPPOSITE THE DIRECTION IN WHICH THE OBJECT IS 70 MOVING.

71

THE IDEAS WE'VE BEEN DISCUSSING IN THESE FOUR PROGRAMS ARE

FUNDAMENTAL IN CLASSICAL MECHANICS. OUR UNDERSTANDING OF THEM 73

JAS BEEN GREATLY ENHANCED BY THE BRILLIANT INSIGHTS PROVIDED 74

BY GALILEO, NEWTON, AND THEIR SUCCESSORS. THE STORY OF THE WORK 75

OF THESE EARLY SCIENTISTS IS FASCINATING READING.

76

THESE IDEAS PROVIDE A STARTING POINT FOR FURTHER STUDY IN 77

MECHANICS. VERY SOON, FOR EXAMPLE, YOU WILL STUDY FALLING 78

BODIES. WHEN A BODY FALLS THE FORCE CAUSING IT TO ACCELERATE 79

IS ITS WEIGHT...

80

IT HAS BEEN VERY NICE WORKING WITH YOU IN THESE PAST FOUR 51 EXPERIMENTS. PERHAPS WE'LL MEET AGAIN IF SOMEONE WILL WRITE 82

MORE PROGRAMS...?

83

BEFORE WE PART, YOU'LL HAVE TO TYPE IN THE EQUATION REPRE-

SENTING NEWTON'S 2ND LAW WHICH WE DEVELOPED IN THIS PROGRAM.

THIS PROGRAM IS THE 4TH IN A SERIES. SINCE THE CONCEPTS DEVELOPED 86

ARE SEQUENTIAL YOU SHOULD BEGIN BY VIEWING THE FILM LOOP 87

FORCE & MOTION I' AND THEN RUN 'FORCEA'.

88

YOU SHOULD KNOW THE CORRECT ANSWER TO THIS QUESTION IF YOU'VE

BEEN THROUGH 'FORCEC'. I'LL GIVE YOU ONE MORE CHANCE TO TYPE 90

IT PROPERLY.

91

WRONG. THE FORCE (IN N) = MASS (KG) X ACCEL (M/SEC/SEC).

MULTIPLY THE MASS TIMES THE ACCELERATION TO FIND THE FORCE IN 93

NEWTONS. TRY THE PROBLEM AGAIN.

94

NO. 600KG X 2M/SEC/SEC = 1200N. IF YOU DON'T UNDERSTAND 95

DISCUSS THIS WITH YOUR TEACHER AS SOON AS POSSIBLE. NOW HERE'S 96

ANOTHER PROBLEM.

97

NO. THE ACCELERATION IS 30/15 = 2M/SEC/SEC. F=2000 X 2 = 4000N.

IF YOU DON'T UNDERSTAND DISCUSS THIS WITH YOUR TEACHER AS

SOON AS POSSIBLE. READ THE PROBLEM AGAIN AND ANSWER IT

CORRECTLY.

101

INCORRECT. THE STOVE IS TRAVELLING AT A CONSTANT SPEED; THERE

IS NO ACCELERATION. THEREFORE THE SUM OF ALL FORCES ON THE 103

STOVE MUST =0. IF 250N IS BEING APPLIED TO PUSH THE STOVE,

THERE MUST BE AN EQUAL AND OPPOSITE FORCE DUE TO FRICTION.

ANSWER THE PROBLEM AGAIN.

106

SORRY, WRONG ANSWER. YOU CAN FIND MASS A AND MASS B BY

USING NEWTON'S 2ND LAW FOR EACH. THE NEW MASS BEING ACCEL.

RATED IS THE SUM OF MASS A AND B. USE THE 2ND LAW TO FIND 109

THE NEW ACCELERATION. ANSWER THE QUESTION AGAIN.

THE TOTAL MASS = 6+2=8KG. THE NEW ACCEL. =F/M=12/8=1.5.

IF YOU DON'T UNDERSTAND, DISCUSS THIS WITH YOUR TEACHER AS

SOON AS POSSIBLE. READ THE PROBLEM AGAIN AND ANSWER IT 113

CORRECTLY.

114

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

NON-COMPUTER SIMULATION AND PROBLEM SHEETS

technical report 1

In this first investigation the experimenters are studying how an object's velocity changes when a constant force is applied. Throughout all the runs of today's experiments the rubber band has been stretched 60 cm. and the force is held constant as you observed in the film loop.

In the first run there were two bricks on the cart, and the experimenters gathered the following data from a careful analysis of the ticker tape pulled by the cart.

TIME (sec)	VELOCITY (cm/sec)
.1	1.6
• 2	3.2
•3	4.8
.4	6.4
•5	8.0
.6	9.6
.7	11.2
.8	12.8
.9	14.4
1.0	16.0

To see how the data would differ under the influence of a different load, the experimenters made a second run with four bricks on the cart. The following data was gathered from a careful analysis of the ticker tape made in the run.

TIME (sec)	VELOCITY (cm/sec)
.1	1.0
. 2	1.9
•3	2.9
. 4	3.8
•5	4.8
.6	5.8
. 7	6.8
.8	7.7
•9	8.6
1.0	9.6

To study the data, construct a graph plotting both curves on the same velocity vs. time axes for ease of comparison.

Next, discuss the following questions in your experiment reports:

- 1. What kind of relationship exists between velocity and time under these conditions?
- 2. The constant force gave the cart what kind of acceleration? (Remember that the acceleration of an object at any point is the slope of its velocity vs. time graph at that point.)
- 3. Analyze the graph and determine the acceleration in cm/sec² produced by the force in both runs.
- 4. Was the acceleration greater or smaller when the smaller mass was accelerated?

Next, list the sources of experimental error as you envision them and state the major conclusions you can draw from the experiment.

After you have completed the write-up of the experiment, do the following problem:

ocity at the end of 40° sec.?

In the first experiment, we observed that a constant force gave our cart a constant acceleration. In this investigation the experimenters are studying how different forces affect the acceleration of an object. As you observed in the film, we can very the force we apply by using different numbers of rubber loops stretched a constant length.

In this particular experiment the loops were always stretched 60 cm, and the cart was loaded with 2 bricks throughout all the runs. A different value of force was applied in each run, and the corresponding value of acceleration was determined from a careful analysis of the ticker tape pulled by the cart in each run. Here is a table of the data collected in this experiment.

FORCE (loops)	ACCELERATION (cm/sec ²)
1	8
2 ∛	24
3	40
4	56
5	72
6	88

To study the data plot a graph of Acceleration vs. Force.

Next, discuss the following questions in your experiment report:

- 1. What kind of relationship exists between acceleration and force under these conditions?
- 2. (A) If we extend the graph, what acceleration do we predict for a force of 0 loops?
 - (B) Is this extrapolation justified?
- 3. Note that the graph does not pass through the origin. Perhaps a <u>frictional</u> force keeps the cart from accelerating when we apply a small positive force. If this hypothesis is true, determine from the graph the force of friction in the system.
- 4. Had we used a cart with greater friction then in our experiment, would the intercept on the force axis be to the right or to the left of its present location?

If, the experimenters had plotted the <u>resultant</u> force acting on the cart instead of the <u>applied</u> force, the graph would have passed through the origin. (The resultant force is the applied force minus the force of friction; a graph of the <u>resultant</u> force vs. acceleration represents the relationship for a frictionless cart.) On your graph paper, sketch a dashed line to display the F vs. A relationship if the cart had been frictionless.

Write an equation to fit the dashed line. Use K to represent the slope (don"t bother to calculate it).

List the sources of experimental error as you envision them, and state the major conclusions you can draw from the experiment.

After you have completed the write-up of this experiment do the following problems:

- 1. A spaceship is accelerating in space at 10 m/sec² due to the force provided by one rocket engine. Suddenly two more identical rockets are ignited providing thrust in the same direction as the first. What acceleration does the ship now experience?
- 2. In 10 sec. an object accelerates from kes to a speed of 300 cm/sec when acted upon by a net force (F). At the end of the 10 sec. interval F becomes one-third its original strength. What is the speed of the object

In the first experiment of this series we observed that a constant force caused a body to have a constand acceleration. In the last experiment we held the mass constant and observed that the acceleration of the cart was directly proportional to the applied force. In this investigation the experimenters are studying how a constant force accelerates different masses. As you observed in the film, we can vary the cart's mass by using different numbers of identical bricks for a load.

In this particular experiment the mass of the empty cart was adjusted to equal the mass of one brick, and a constant force of SO cm was applied to the cart throughout all runs. A different number of bricks was placed on the cart in each run, and the corresponding value of acceleration was determined from a careful analysis of the ticker tape pulled by the cart in each run. Here is a table of the data collected in this experiment.

TOTAL MASS

of Load and Cart (brkcks)	ACCELERATION (cm/sec ²)	<u>1/A</u>
2	32.0	.031
3	21.3	.047
5	12.8	.078
7	9.1	.109
9	7.1	.141

To study the data plot a graph of Acceleration vs. Mass.

Next, discuss the kind of relationship which exists between acceleration and mass under these conditions.

Our primary task as physicists is to find an algebraic expression for the relationship between acceleration and mass. A study of the graph you've just constructed suggests that it might be a 1st power inverse relationship, that is: acceleration is directly proportional to 1/mass, or mass is directly proportional to 1/acceleration. To check out, this prediction, plot a new graph of 1/A vs. Mass for each of our trials using the data collected in the experiment.

What kind of relationship exists between the two variables which you've plotted?

Write an equation to fit this graph. Use K to represent the slope (don't bother to calculate it).

Here is a problem for you to try using your graphs and the experimental apparatus: A rock of unknown mass was placed on the unloaded cart. A run was made with it applying the same force as in the other runs. An analysis of the tape indicated an acceleration of 15.0 cm/sec². What was the total mass of rock and cart?

What is the mass of the rock along? (This method you're using is one means of determining the inertial mass of an object.)

List the sources of experimental error as you envision them, and state the major conclusions you can draw from the experiment.

After you have completed the write-up of this experiment do the following problems:

1. A car has a maximum acceleration of 8 m/sec². If the car tows another car of identical mass and design, what will be the maximum acceleration?

Mass A accelerates at 80 ft/sec² and mass b accelerates at 20 ft/sec² when identical forces are applied. What is the ratio: MassA/MassB?

In this final section of the series, we will discuss what we've learned about force and motion and introduce a system of units in common use. In the first experiment we observed that a constant force causes a body to undergo a constant acceleration. In the second experiment we observed that acceleration was directly proportional to the net force. In the third experiment we observed what mass and acceleration are inversely related when a constant force is applied.

We may write this last statement as:

- 1) M is directly proportional to 1/A or
- 2) A is directly proportional to 1/M

From the results of Experiment 2 we can write:

3) A is directly proportional to F

Statements (2) and (3) can be combined and written as:

A is directly proportional to F/M

An equivalent statement is:

MA is directly proportional to F

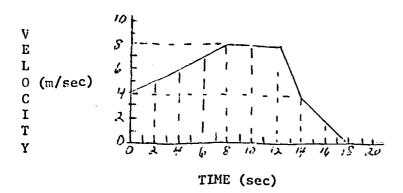
or: F is directly proportional to MA

In equation form:

F = RMA

In this equation K is a constant of proportionality and its numerical value depends upon the units used to measure force, mass, and acceleration. It would have a specific value if we continued to measure force in LOOFS and mass in BRICKS. The units we used happened to be convenient for us, but they are not in common use in the world. The equation, often referred to as Newton's 2nd Law, is perhaps the most fundamental equation in classical mechanics, and the unit of force commonly used is defined so that K in the equation equals 1. In scientific work a vary common unit of mass in use today is the kilogram (kg). The basic unit of force will cause a mass of 1 kilogram to accelerate at 1 m/sec². This unit of force is called the Newton (N). In other words, a force of 1 Newton will cause a mass of 1 Kilogram to accelerate 1 m/sec². Using these units the equation is written:

F = 11A


 $1 N = 1 kg m/sec^2$

Read the information above carefully. After you understand it, do the following problems.

- 1. A 600 kg spaceship is propelled by a rocket engine. Its acceleration is 2 m/sec^2 . What is the net force acting on the spaceship?
- 2. An 80 kg astronaut in equilibrium outside his spaceship receives a 40 Newton force from a propulsion jet attached to him. What acceleration does he experience?
- 3. A 2000 kg car is travelling at a speed of 30 m/sec when the brakes are applied. The car stops in 15 sec. If we assume a constant acceleration, what was the force applied by the brakes?
- I must apply a force of 250 N. What is the frictional force acting on the

5. A force of 12 N gives mass A an acceleration of 2 m/sec² and mass B an acceleration of 6 m/sec². What is the acceleration when the two are fastened together and the same force is applied?

The last few questions deal with the graph printed below which shows the velocity of a 10 kg object along a straight path.

- 6. The net force acting on the object was 0 at: (A) 0 sec; (B) 4 sec; (C) 10 sec; (D) 13 sec; (E) 16 sec; (F) None of the above.
- 7. The net force acting on the object was greatest at: (A) 0 sec; (B) 4 sec; (C) 10 sec; (D) 13 sec; (E) 16 sec; (F) None of the above.
- 8. The net force was constant between: (A) 6-9 sec; (B) 9-13 sec; (C) 13-15 sec; (D) 15-18 sec; (E) None of the above.
- 9. What was the acceleration of the object at 6 sec?
- 10. Determine the net force at 6 sec. (The object has a mass of 10 kg.)
- 11. Determine the net force acting on the object at 13 sec.

The ideas we've been discussing in these four "experiments" are fundamental in classical technics. Our understanding of them has been greatly enhanced by the brilliant insights provided by Galileo, Newton, and their successors. The story of the work of these early scientists is fascinating reading.

These ideas provide a starting point for further study in mechanics. Very soon, for example, you will apply them in the study of falling bodies. When an object falls the force causing it to accelerate is its own weight...

$$F = MA$$

Answers to some of the above questions are:

- 1. 1200 N
- 2. $.5 \text{ m/sec}^2$
- 3. 4000 N
- 4. 250 N
- 5. 1.5 m/sec^2

NEWTON'S LAW: A COMPUTER-BASED SIMULATION FOR INTRODUCTORY PHYSICS

ACQUISITION AND USE OF MATERIALS

technical report 1

•• •• 123

Acquisition and Use of Materials

Computer Programs. The author authorizes non-commercial use of the programs in the unit without his approval. A magnetic tape of the computer programs and files may be obtained for a total cost of \$25.00 including all mailing and handling charges. The tape may be obtained by writing:

Librarian Computer Center Lindquist Center for Measurement University of Iowa Iowa City, Iowa 52242

Printed Materials and Evaluation Instruments. The author authorizes non-commercial users to reproduce, citing the source, the printed materials included in this Technical Report. The Project Physics Test items which are included in the evaluation instruments were selected from preliminary editions which are in the public domain.

Film Loops. Four film loops are available to support the unit. They are not essential to effective use of the unit, but they may be obtained from the author for a total cost of \$80.00 including all mailing and handling charges.

